BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

412 related articles for article (PubMed ID: 38203764)

  • 21. Spatial and seasonal variation in diversity and structure of microbial biofilms on marine plastics in Northern European waters.
    Oberbeckmann S; Loeder MG; Gerdts G; Osborn AM
    FEMS Microbiol Ecol; 2014 Nov; 90(2):478-92. PubMed ID: 25109340
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An Overview into Polyethylene Terephthalate (PET) Hydrolases and Efforts in Tailoring Enzymes for Improved Plastic Degradation.
    Khairul Anuar NFS; Huyop F; Ur-Rehman G; Abdullah F; Normi YM; Sabullah MK; Abdul Wahab R
    Int J Mol Sci; 2022 Oct; 23(20):. PubMed ID: 36293501
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Preliminary investigation of microorganisms potentially involved in microplastics degradation using an integrated metagenomic and biochemical approach.
    Giangeri G; Morlino MS; De Bernardini N; Ji M; Bosaro M; Pirillo V; Antoniali P; Molla G; Raga R; Treu L; Campanaro S
    Sci Total Environ; 2022 Oct; 843():157017. PubMed ID: 35777567
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Microbial Degradation and Valorization of Plastic Wastes.
    Ru J; Huo Y; Yang Y
    Front Microbiol; 2020; 11():442. PubMed ID: 32373075
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Microbial colonization and degradation of marine microplastics in the plastisphere: A review.
    Zhai X; Zhang XH; Yu M
    Front Microbiol; 2023; 14():1127308. PubMed ID: 36876073
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biodegradation of oil-based plastics in the environment: Existing knowledge and needs of research and innovation.
    Raddadi N; Fava F
    Sci Total Environ; 2019 Aug; 679():148-158. PubMed ID: 31082589
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Plastic biodegradation: Frontline microbes and their enzymes.
    Amobonye A; Bhagwat P; Singh S; Pillai S
    Sci Total Environ; 2021 Mar; 759():143536. PubMed ID: 33190901
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Call for biotechnological approach to degrade plastic in the era of COVID-19 pandemic.
    Ali S; Bukhari DA; Rehman A
    Saudi J Biol Sci; 2023 Mar; 30(3):103583. PubMed ID: 36748033
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Environmental Consortium Containing
    Roberts C; Edwards S; Vague M; León-Zayas R; Scheffer H; Chan G; Swartz NA; Mellies JL
    mSphere; 2020 Dec; 5(6):. PubMed ID: 33361127
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A landfill serves as a critical source of microplastic pollution and harbors diverse plastic biodegradation microbial species and enzymes: Study in large-scale landfills, China.
    Lin X; Zhang S; Yang S; Zhang R; Shi X; Song L
    J Hazard Mater; 2023 Sep; 457():131676. PubMed ID: 37263024
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biodegradation of polyvinyl chloride plastic films by enriched anaerobic marine consortia.
    Giacomucci L; Raddadi N; Soccio M; Lotti N; Fava F
    Mar Environ Res; 2020 Jun; 158():104949. PubMed ID: 32217303
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Unveiling the residual plastics and produced toxicity during biodegradation of polyethylene (PE), polystyrene (PS), and polyvinyl chloride (PVC) microplastics by mealworms (Larvae of Tenebrio molitor).
    Peng BY; Sun Y; Zhang X; Sun J; Xu Y; Xiao S; Chen J; Zhou X; Zhang Y
    J Hazard Mater; 2023 Jun; 452():131326. PubMed ID: 37027925
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Selection of microorganisms capable of polyethylene (PE) and polypropylene (PP) degradation.
    Wróbel M; Szymańska S; Kowalkowski T; Hrynkiewicz K
    Microbiol Res; 2023 Feb; 267():127251. PubMed ID: 36423546
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A review on cutinases enzyme in degradation of microplastics.
    Sahu S; Kaur A; Khatri M; Singh G; Arya SK
    J Environ Manage; 2023 Dec; 347():119193. PubMed ID: 37797518
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Understanding challenges associated with plastic and bacterial approach toward plastic degradation.
    Sharma H; Neelam DK
    J Basic Microbiol; 2023 Mar; 63(3-4):292-307. PubMed ID: 36470670
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Potential for and Distribution of Enzymatic Biodegradation of Polystyrene by Environmental Microorganisms.
    Hou L; Majumder EL
    Materials (Basel); 2021 Jan; 14(3):. PubMed ID: 33494256
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Recent advances in biodegradation of emerging contaminants - microplastics (MPs): Feasibility, mechanism, and future prospects.
    Li S; Yang Y; Yang S; Zheng H; Zheng Y; M J; Nagarajan D; Varjani S; Chang JS
    Chemosphere; 2023 Aug; 331():138776. PubMed ID: 37100247
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A multi-OMIC characterisation of biodegradation and microbial community succession within the PET plastisphere.
    Wright RJ; Bosch R; Langille MGI; Gibson MI; Christie-Oleza JA
    Microbiome; 2021 Jun; 9(1):141. PubMed ID: 34154652
    [TBL] [Abstract][Full Text] [Related]  

  • 39. From plastics to microplastics and organisms.
    Bajt O
    FEBS Open Bio; 2021 Apr; 11(4):954-966. PubMed ID: 33595903
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Degradation and metabolism of synthetic plastics and associated products by Pseudomonas sp.: capabilities and challenges.
    Wilkes RA; Aristilde L
    J Appl Microbiol; 2017 Sep; 123(3):582-593. PubMed ID: 28419654
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.