These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
390 related articles for article (PubMed ID: 38203877)
1. Preparation of Electrodes with β-Nickel Hydroxide/CVD-Graphene/3D-Nickel Foam Composite Structures to Enhance the Capacitance Characteristics of Supercapacitors. Lu YM; Hong SH Materials (Basel); 2023 Dec; 17(1):. PubMed ID: 38203877 [TBL] [Abstract][Full Text] [Related]
2. Controlling the Cooling Rate of Hydrothermal Synthesis to Enhance the Supercapacitive Properties of β-Nickel Hydroxide Electrode Materials. Lu YM; Hong SH Materials (Basel); 2023 Aug; 16(16):. PubMed ID: 37629867 [TBL] [Abstract][Full Text] [Related]
3. Ultrathin β-Ni(OH)2 nanoplates vertically grown on nickel-coated carbon nanotubes as high-performance pseudocapacitor electrode materials. Ma X; Li Y; Wen Z; Gao F; Liang C; Che R ACS Appl Mater Interfaces; 2015 Jan; 7(1):974-9. PubMed ID: 25514200 [TBL] [Abstract][Full Text] [Related]
4. Fabrication of 3D HierarchicalSphericalHoneycomb-Like Nd Liang H; Wang S; Lu S; Xu W; Zhou M Materials (Basel); 2023 Feb; 16(4):. PubMed ID: 36837323 [TBL] [Abstract][Full Text] [Related]
5. A nickel hydroxide-coated 3D porous graphene hollow sphere framework as a high performance electrode material for supercapacitors. Zhang F; Zhu D; Chen X; Xu X; Yang Z; Zou C; Yang K; Huang S Phys Chem Chem Phys; 2014 Mar; 16(9):4186-92. PubMed ID: 24452101 [TBL] [Abstract][Full Text] [Related]
6. Ultrathin nickel hydroxide on carbon coated 3D-porous copper structures for high performance supercapacitors. Kang KN; Kim IH; Ramadoss A; Kim SI; Yoon JC; Jang JH Phys Chem Chem Phys; 2018 Jan; 20(2):719-727. PubMed ID: 29231217 [TBL] [Abstract][Full Text] [Related]
7. Nickel-cobalt hydroxide: a positive electrode for supercapacitor applications. Vidhya MS; Ravi G; Yuvakkumar R; Velauthapillai D; Thambidurai M; Dang C; Saravanakumar B RSC Adv; 2020 May; 10(33):19410-19418. PubMed ID: 35515465 [TBL] [Abstract][Full Text] [Related]
8. Highly conductive three-dimensional MnO2-carbon nanotube-graphene-Ni hybrid foam as a binder-free supercapacitor electrode. Zhu G; He Z; Chen J; Zhao J; Feng X; Ma Y; Fan Q; Wang L; Huang W Nanoscale; 2014 Jan; 6(2):1079-85. PubMed ID: 24296659 [TBL] [Abstract][Full Text] [Related]
9. Ni-Co Selenide Nanosheet/3D Graphene/Nickel Foam Binder-Free Electrode for High-Performance Supercapacitor. Wang Y; Zhang W; Guo X; Jin K; Chen Z; Liu Y; Yin L; Li L; Yin K; Sun L; Zhao Y ACS Appl Mater Interfaces; 2019 Feb; 11(8):7946-7953. PubMed ID: 30721020 [TBL] [Abstract][Full Text] [Related]
10. Direct formation of reduced graphene oxide and 3D lightweight nickel network composite foam by hydrohalic acids and its application for high-performance supercapacitors. Huang H; Tang Y; Xu L; Tang S; Du Y ACS Appl Mater Interfaces; 2014 Jul; 6(13):10248-57. PubMed ID: 24936935 [TBL] [Abstract][Full Text] [Related]
11. Ni Foam-Ni Wang X; Hu J; Su Y; Hao J; Liu F; Han S; An J; Lian J Chemistry; 2017 Mar; 23(17):4128-4136. PubMed ID: 28133889 [TBL] [Abstract][Full Text] [Related]
12. Hybrid hydrogels of porous graphene and nickel hydroxide as advanced supercapacitor materials. Chen S; Duan J; Tang Y; Zhang Qiao S Chemistry; 2013 May; 19(22):7118-24. PubMed ID: 23553792 [TBL] [Abstract][Full Text] [Related]
13. Development of 3D compound structures and highly wettable carbonate hydroxide electrodes for high-performance supercapacitors. Lee D; Roh JW; Kim DH; Kim J Dalton Trans; 2024 Aug; 53(34):14411-14421. PubMed ID: 39140313 [TBL] [Abstract][Full Text] [Related]
14. Enhanced performance of hybrid supercapacitors by the synergistic effect of Co(OH) Hou Z; Yu J; Zhou X; Chen Z; Xu J; Zhao B; Gen W; Zhang H J Colloid Interface Sci; 2023 Sep; 646():753-762. PubMed ID: 37229993 [TBL] [Abstract][Full Text] [Related]
15. Construction of Hierarchical CNT/rGO-Supported MnMoO Mu X; Du J; Zhang Y; Liang Z; Wang H; Huang B; Zhou J; Pan X; Zhang Z; Xie E ACS Appl Mater Interfaces; 2017 Oct; 9(41):35775-35784. PubMed ID: 28948775 [TBL] [Abstract][Full Text] [Related]
16. Rapid in situ growth of β-Ni(OH) Li J; Liu Y; Cao W; Chen N Dalton Trans; 2020 Apr; 49(15):4956-4966. PubMed ID: 32236201 [TBL] [Abstract][Full Text] [Related]
17. Core-shell nanowires of NiCo Wang WD; Zhang PP; Gao SQ; Wang BQ; Wang XC; Li M; Liu F; Cheng JP J Colloid Interface Sci; 2020 Nov; 579():71-81. PubMed ID: 32574730 [TBL] [Abstract][Full Text] [Related]
18. One-step synthesis of free-standing α-Ni(OH)₂ nanosheets on reduced graphene oxide for high-performance supercapacitors. Dong B; Zhou H; Liang J; Zhang L; Gao G; Ding S Nanotechnology; 2014 Oct; 25(43):435403. PubMed ID: 25299341 [TBL] [Abstract][Full Text] [Related]
19. Nanoporous Ni(OH)2 thin film on 3D Ultrathin-graphite foam for asymmetric supercapacitor. Ji J; Zhang LL; Ji H; Li Y; Zhao X; Bai X; Fan X; Zhang F; Ruoff RS ACS Nano; 2013 Jul; 7(7):6237-43. PubMed ID: 23758135 [TBL] [Abstract][Full Text] [Related]
20. Rational Design of Nanosheet Array-Like Layered-Double-Hydroxide-Derived NiCo Wei Z; Wang Q; Qu M; Zhang H ACS Appl Mater Interfaces; 2024 Apr; 16(15):18734-18744. PubMed ID: 38569072 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]