These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 38204400)

  • 1. Standoff Deep Ultraviolet Raman Spectrometer for Trace Detection.
    Bykov SV; Asher SA
    Appl Spectrosc; 2024 Feb; 78(2):227-242. PubMed ID: 38204400
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Compact Solid-State 213 nm Laser Enables Standoff Deep Ultraviolet Raman Spectrometer: Measurements of Nitrate Photochemistry.
    Bykov SV; Mao M; Gares KL; Asher SA
    Appl Spectrosc; 2015 Aug; 69(8):895-901. PubMed ID: 26162998
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Solid State Vanadate Laser and 213 nm Rayleigh Rejection Filter Enable Miniaturized Deep Ultraviolet Raman Spectrometers.
    Bykov SV; Asher SA
    Appl Spectrosc; 2024 Sep; ():37028241280722. PubMed ID: 39324202
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep Ultraviolet Standoff Photoacoustic Spectroscopy of Trace Explosives.
    Zrimsek AB; Bykov SV; Asher SA
    Appl Spectrosc; 2019 Jun; 73(6):601-609. PubMed ID: 30012001
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultraviolet Raman Wide-Field Hyperspectral Imaging Spectrometer for Standoff Trace Explosive Detection.
    Hufziger KT; Bykov SV; Asher SA
    Appl Spectrosc; 2017 Feb; 71(2):173-185. PubMed ID: 27895234
    [TBL] [Abstract][Full Text] [Related]  

  • 6. UV Resonance Raman Investigation of Pentaerythritol Tetranitrate Solution Photochemistry and Photoproduct Hydrolysis.
    Gares KL; Bykov SV; Asher SA
    J Phys Chem A; 2017 Oct; 121(41):7889-7894. PubMed ID: 28945089
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep-ultraviolet Raman microspectroscopy: characterization of wide-gap semiconductors.
    Nakashima S; Okumura H; Yamamoto T; Shimidzu R
    Appl Spectrosc; 2004 Feb; 58(2):224-9. PubMed ID: 17140482
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design and performance of an ultraviolet resonance Raman spectrometer for proteins and nucleic acids.
    Russell MP; Vohník S; Thomas GJ
    Biophys J; 1995 Apr; 68(4):1607-12. PubMed ID: 7787047
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Standoff Detection System Using Raman Spectroscopy in the Deep-Ultraviolet Wavelength Region for the Detection of Hazardous Gas.
    Eto S; Ichikawa Y; Ogita M; Sugimoto S; Asahi I
    Appl Spectrosc; 2022 Oct; 76(10):1246-1253. PubMed ID: 35354330
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Portable Deep-Ultraviolet (DUV) Raman for Standoff Detection.
    Hopkins AJ; Cooper JL; Profeta LT; Ford AR
    Appl Spectrosc; 2016 May; 70(5):861-73. PubMed ID: 27059445
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Standoff detection of high explosive materials at 50 meters in ambient light conditions using a small Raman instrument.
    Carter JC; Angel SM; Lawrence-Snyder M; Scaffidi J; Whipple RE; Reynolds JG
    Appl Spectrosc; 2005 Jun; 59(6):769-75. PubMed ID: 16053543
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calibration of the SHERLOC Deep Ultraviolet Fluorescence-Raman Spectrometer on the
    Uckert K; Bhartia R; Beegle LW; Monacelli B; Asher SA; Burton AS; Bykov SV; Davis K; Fries MD; Jakubek RS; Hollis JR; Roppel RD; Wu YH
    Appl Spectrosc; 2021 Jul; 75(7):763-773. PubMed ID: 33876994
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vibrational spectroscopy standoff detection of explosives.
    Pacheco-Londoño LC; Ortiz-Rivera W; Primera-Pedrozo OM; Hernández-Rivera SP
    Anal Bioanal Chem; 2009 Sep; 395(2):323-35. PubMed ID: 19633965
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new eye-safe UV Raman spectrometer for the remote detection of energetic materials in fingerprint concentrations: Characterization by PCA and ROC analyzes.
    Almaviva S; Chirico R; Nuvoli M; Palucci A; Schnürer F; Schweikert W
    Talanta; 2015 Nov; 144():420-6. PubMed ID: 26452842
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Solution and solid trinitrotoluene (TNT) photochemistry: persistence of TNT-like ultraviolet (UV) resonance Raman bands.
    Gares KL; Bykov SV; Godugu B; Asher SA
    Appl Spectrosc; 2014; 68(1):49-56. PubMed ID: 24405954
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single-pulse standoff Raman detection of chemicals from 120 m distance during daytime.
    Misra AK; Sharma SK; Acosta TE; Porter JN; Bates DE
    Appl Spectrosc; 2012 Nov; 66(11):1279-85. PubMed ID: 23146183
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Raman spectroscopy for detection of ammonium nitrate as an explosive precursor used in improvised explosive devices.
    Diaz D; Hahn DW
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Jun; 233():118204. PubMed ID: 32146426
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep ultraviolet resonance Raman excitation enables explosives detection.
    Tuschel DD; Mikhonin AV; Lemoff BE; Asher SA
    Appl Spectrosc; 2010 Apr; 64(4):425-32. PubMed ID: 20412628
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simultaneous Raman spectroscopy-laser-induced breakdown spectroscopy for instant standoff analysis of explosives using a mobile integrated sensor platform.
    Moros J; Lorenzo JA; Lucena P; Tobaria LM; Laserna JJ
    Anal Chem; 2010 Feb; 82(4):1389-400. PubMed ID: 20085236
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Underwater Time-Gated Standoff Raman Sensor for In Situ Chemical Sensing.
    Sharma SK; Howe BM; Misra AK; Rognstad MR; Porter JN; Acosta-Maeda TE; Egan MJ
    Appl Spectrosc; 2021 Jun; 75(6):739-746. PubMed ID: 33635100
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.