These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
42. Alginate-Lysozyme Nanofibers Hydrogels with Improved Rheological Behavior, Printability and Biological Properties for 3D Bioprinting Applications. Teixeira MC; Lameirinhas NS; Carvalho JPF; Valente BFA; Luís J; Pires L; Oliveira H; Oliveira M; Silvestre AJD; Vilela C; Freire CSR Nanomaterials (Basel); 2022 Jun; 12(13):. PubMed ID: 35808026 [TBL] [Abstract][Full Text] [Related]
43. Bioprinting small diameter blood vessel constructs with an endothelial and smooth muscle cell bilayer in a single step. Xu L; Varkey M; Jorgensen A; Ju J; Jin Q; Park JH; Fu Y; Zhang G; Ke D; Zhao W; Hou R; Atala A Biofabrication; 2020 Jul; 12(4):045012. PubMed ID: 32619999 [TBL] [Abstract][Full Text] [Related]
44. Tunable metacrylated hyaluronic acid-based hybrid bioinks for stereolithography 3D bioprinting. Hossain Rakin R; Kumar H; Rajeev A; Natale G; Menard F; Li ITS; Kim K Biofabrication; 2021 Sep; 13(4):. PubMed ID: 34507314 [TBL] [Abstract][Full Text] [Related]
45. Advancing bioinks for 3D bioprinting using reactive fillers: A review. Heid S; Boccaccini AR Acta Biomater; 2020 Sep; 113():1-22. PubMed ID: 32622053 [TBL] [Abstract][Full Text] [Related]
46. Effect of bioink properties on printability and cell viability for 3D bioplotting of embryonic stem cells. Ouyang L; Yao R; Zhao Y; Sun W Biofabrication; 2016 Sep; 8(3):035020. PubMed ID: 27634915 [TBL] [Abstract][Full Text] [Related]
47. Visible Light Photoinitiation of Cell-Adhesive Gelatin Methacryloyl Hydrogels for Stereolithography 3D Bioprinting. Wang Z; Kumar H; Tian Z; Jin X; Holzman JF; Menard F; Kim K ACS Appl Mater Interfaces; 2018 Aug; 10(32):26859-26869. PubMed ID: 30024722 [TBL] [Abstract][Full Text] [Related]
48. Correlating rheological properties and printability of collagen bioinks: the effects of riboflavin photocrosslinking and pH. Diamantides N; Wang L; Pruiksma T; Siemiatkoski J; Dugopolski C; Shortkroff S; Kennedy S; Bonassar LJ Biofabrication; 2017 Jul; 9(3):034102. PubMed ID: 28677597 [TBL] [Abstract][Full Text] [Related]
49. Characterization of Alginate-Gelatin-Cholesteryl Ester Liquid Crystals Bioinks for Extrusion Bioprinting of Tissue Engineering Scaffolds. Abdulmaged AI; Soon CF; Talip BA; Zamhuri SAA; Mostafa SA; Zhou W Polymers (Basel); 2022 Mar; 14(5):. PubMed ID: 35267843 [TBL] [Abstract][Full Text] [Related]
50. Sonochemical Degradation of Gelatin Methacryloyl to Control Viscoelasticity for Inkjet Bioprinting. Lee Y; Park JA; Tuladhar T; Jung S Macromol Biosci; 2023 May; 23(5):e2200509. PubMed ID: 36896820 [TBL] [Abstract][Full Text] [Related]
51. Formulation of chitosan and chitosan-nanoHAp bioinks and investigation of printability with optimized bioprinting parameters. Coşkun S; Akbulut SO; Sarıkaya B; Çakmak S; Gümüşderelioğlu M Int J Biol Macromol; 2022 Dec; 222(Pt A):1453-1464. PubMed ID: 36113600 [TBL] [Abstract][Full Text] [Related]
52. Three-dimensional bioprinting of a full-thickness functional skin model using acellular dermal matrix and gelatin methacrylamide bioink. Jin R; Cui Y; Chen H; Zhang Z; Weng T; Xia S; Yu M; Zhang W; Shao J; Yang M; Han C; Wang X Acta Biomater; 2021 Sep; 131():248-261. PubMed ID: 34265473 [TBL] [Abstract][Full Text] [Related]
53. Formulation and characterization of gelatin methacrylamide-hydroxypropyl methacrylate based bioink for bioprinting applications. Kallingal N; Ramakrishnan R; Krishnan V K J Biomater Sci Polym Ed; 2023 Apr; 34(6):768-790. PubMed ID: 36346058 [TBL] [Abstract][Full Text] [Related]
55. Printability of pulp derived crystal, fibril and blend nanocellulose-alginate bioinks for extrusion 3D bioprinting. Jessop ZM; Al-Sabah A; Gao N; Kyle S; Thomas B; Badiei N; Hawkins K; Whitaker IS Biofabrication; 2019 Jul; 11(4):045006. PubMed ID: 30743252 [TBL] [Abstract][Full Text] [Related]
56. Three-dimensional bioprinting of artificial ovaries by an extrusion-based method using gelatin-methacryloyl bioink. Wu T; Gao YY; Su J; Tang XN; Chen Q; Ma LW; Zhang JJ; Wu JM; Wang SX Climacteric; 2022 Apr; 25(2):170-178. PubMed ID: 33993814 [TBL] [Abstract][Full Text] [Related]
57. Versatile xanthan gum-based support bath material compatible with multiple crosslinking mechanisms: rheological properties, printability, and cytocompatibility study. Lai G; Meagher L Biofabrication; 2024 Apr; 16(3):. PubMed ID: 38565131 [TBL] [Abstract][Full Text] [Related]
58. Properties and Printability of the Synthesized Hydrogel Based on GelMA. Arguchinskaya NV; Isaeva EV; Kisel AA; Beketov EE; Lagoda TS; Baranovskii DS; Yakovleva ND; Demyashkin GA; Komarova LN; Astakhina SO; Shubin NE; Shegay PV; Ivanov SA; Kaprin AD Int J Mol Sci; 2023 Jan; 24(3):. PubMed ID: 36768446 [TBL] [Abstract][Full Text] [Related]
59. Effects of transglutaminase cross-linking process on printability of gelatin microgel-gelatin solution composite bioink. Song K; Ren B; Zhai Y; Chai W; Huang Y Biofabrication; 2021 Dec; 14(1):. PubMed ID: 34823234 [TBL] [Abstract][Full Text] [Related]
60. Convergence of melt electrowriting and extrusion-based bioprinting for vascular patterning of a myocardial construct. Ainsworth MJ; Chirico N; de Ruijter M; Hrynevich A; Dokter I; Sluijter JPG; Malda J; van Mil A; Castilho M Biofabrication; 2023 Jun; 15(3):. PubMed ID: 37343567 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]