These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 38205159)

  • 1. Producing superior oleofoams: Unraveling the impact of oil type, surfactant concentration, and production temperature on foam stability and functional characteristics.
    Alhasan FH; Tehrani MM; Varidi M
    Food Chem X; 2024 Mar; 21():101033. PubMed ID: 38205159
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conversion of Pulse Protein Foam-Templated Oleogels into Oleofoams for Improved Baking Application.
    Mohanan A; Harrison K; Cooper DML; Nickerson MT; Ghosh S
    Foods; 2022 Sep; 11(18):. PubMed ID: 36141019
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication and Characterization of Oleofoams Composed of Tribehenoyl-glycerol: Toward a Stable and Higher Air-content Colloidal System.
    Matsuo K; Fujii Y; Ueno S
    J Oleo Sci; 2023 Aug; 72(9):819-829. PubMed ID: 37574284
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication of Stable Oleofoams with Sorbitan Ester Surfactants.
    Liu Y; Binks BP
    Langmuir; 2022 Dec; 38(48):14779-14788. PubMed ID: 36410861
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oleofoams: The impact of formulating air-in-oil systems from a lipid oxidation perspective.
    Ribourg-Birault L; Meynier A; Vergé S; Sallan E; Kermarrec A; Falourd X; Berton-Carabin C; Fameau AL
    Curr Res Food Sci; 2024; 8():100690. PubMed ID: 38328464
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel strategy to fabricate stable oil foams with sucrose ester surfactant.
    Liu Y; Binks BP
    J Colloid Interface Sci; 2021 Jul; 594():204-216. PubMed ID: 33761395
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication and characterization of stable oleofoam based on medium-long chain diacylglycerol and β-sitosterol.
    Qiu C; Lei M; Lee WJ; Zhang N; Wang Y
    Food Chem; 2021 Jul; 350():129275. PubMed ID: 33601090
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gelation and foaming properties of fatty acid mixtures in sunflower oil.
    Zheng R; Zheng Q; Hu B; Cao Y; Lan Y
    J Sci Food Agric; 2022 Jul; 102(9):3513-3521. PubMed ID: 34841529
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oleofoams stabilized by monoacylglycerides: Impact of chain length and concentration.
    Grossi M; Fang B; Rao J; Chen B
    Food Res Int; 2023 Jul; 169():112914. PubMed ID: 37254346
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel approach for the development of edible oleofoams using double network oleogelation systems.
    Tirgarian B; Farmani J
    Food Chem; 2023 Nov; 426():136634. PubMed ID: 37348400
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stabilisation of oleofoams by lauric acid and its glycerol esters.
    Qiu C; Wang S; Wang Y; Lee WJ; Fu J; Binks BP; Wang Y
    Food Chem; 2022 Aug; 386():132776. PubMed ID: 35509162
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of Glyceryl Monoolein Addition on the Foaming Properties and Stability of Whipped Oleogels.
    Andriotis EG; Monou PK; Komis G; Bouropoulos N; Ritzoulis C; Delis G; Kiosis E; Arsenos G; Fatouros DG
    Gels; 2022 Oct; 8(11):. PubMed ID: 36354613
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of X-ray Microcomputed Tomography for the Static and Dynamic Characterization of the Microstructure of Oleofoams.
    Metilli L; Storm M; Marathe S; Lazidis A; Marty-Terrade S; Simone E
    Langmuir; 2022 Feb; 38(4):1638-1650. PubMed ID: 35050635
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Food-grade monoglyceride oil foams: the effect of tempering on foamability, foam stability and rheological properties.
    Heymans R; Tavernier I; Danthine S; Rimaux T; Van der Meeren P; Dewettinck K
    Food Funct; 2018 Jun; 9(6):3143-3154. PubMed ID: 29790526
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oleofoams: Properties of Crystal-Coated Bubbles from Whipped Oleogels-Evidence for Pickering Stabilization.
    Gunes DZ; Murith M; Godefroid J; Pelloux C; Deyber H; Schafer O; Breton O
    Langmuir; 2017 Feb; 33(6):1563-1575. PubMed ID: 28139122
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermal-reversible lacquer wax-based oleofoams in dual stabilization with high ambient stability.
    Gu X; Du L; Meng Z
    Food Res Int; 2023 May; 167():112650. PubMed ID: 37087239
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Foaming properties of monoglycerol fatty acid esters in nonpolar oil systems.
    Shrestha LK; Aramaki K; Kato H; Takase Y; Kunieda H
    Langmuir; 2006 Sep; 22(20):8337-45. PubMed ID: 16981746
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of the ratio between fatty alcohol and fatty acid on foaming properties of whipped oleogels.
    Callau M; Sow-Kébé K; Jenkins N; Fameau AL
    Food Chem; 2020 Dec; 333():127403. PubMed ID: 32653679
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stabilization of nonaqueous foam with lamellar liquid crystal particles in diglycerol monolaurate/olive oil system.
    Shrestha LK; Shrestha RG; Sharma SC; Aramaki K
    J Colloid Interface Sci; 2008 Dec; 328(1):172-9. PubMed ID: 18823901
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Olive Oil Oleogel Formulation Using Wax Esters Derived from Soybean Fatty Acid Distillate.
    Papadaki A; Kopsahelis N; Freire DMG; Mandala I; Koutinas AA
    Biomolecules; 2020 Jan; 10(1):. PubMed ID: 31936326
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.