These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 38205234)

  • 1. Achieving efficient almost CO-free hydrogen production from methanol steam reforming on Cu modified α-MoC.
    Jiang W; Liu A; Yao M; Zhang Y; Fu P
    RSC Adv; 2024 Jan; 14(3):2036-2047. PubMed ID: 38205234
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Construction of porous Cu/CeO
    Cheng Z; Li Y; Wang M; He L; Zhang L; Jin YF; Lan G; Sun X; Qiu Y; Li Y
    J Colloid Interface Sci; 2025 Jan; 677(Pt A):55-67. PubMed ID: 39083892
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Producing hydrogen by catalytic steam reforming of methanol using non-noble metal catalysts.
    Deng Y; Li S; Appels L; Dewil R; Zhang H; Baeyens J; Mikulcic H
    J Environ Manage; 2022 Nov; 321():116019. PubMed ID: 36029634
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Atomically Dispersed Ni/α-MoC Catalyst for Hydrogen Production from Methanol/Water.
    Lin L; Yu Q; Peng M; Li A; Yao S; Tian S; Liu X; Li A; Jiang Z; Gao R; Han X; Li YW; Wen XD; Zhou W; Ma D
    J Am Chem Soc; 2021 Jan; 143(1):309-317. PubMed ID: 33369393
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis, characterization, and methanol steam reforming performance of Cu/perovskite-structured catalysts.
    Mortazavi-Manesh A; Safari N; Bahadoran F; Khani Y
    Heliyon; 2023 Mar; 9(3):e13742. PubMed ID: 36873539
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molybdenum Carbide: Controlling the Geometric and Electronic Structure of Noble Metals for the Activation of O-H and C-H Bonds.
    Deng Y; Ge Y; Xu M; Yu Q; Xiao D; Yao S; Ma D
    Acc Chem Res; 2019 Dec; 52(12):3372-3383. PubMed ID: 31411856
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low-temperature hydrogen production from water and methanol using Pt/α-MoC catalysts.
    Lin L; Zhou W; Gao R; Yao S; Zhang X; Xu W; Zheng S; Jiang Z; Yu Q; Li YW; Shi C; Wen XD; Ma D
    Nature; 2017 Apr; 544(7648):80-83. PubMed ID: 28329760
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stable Cu/Cu
    Lu M; Zheng Z; Lu W; Zhu H; Liao J; Ge Y; Huang X; Zhang Q; Li J; Zhou Y; Wu X; Chen B; Yang C; Qian X; Shao M; Wang T
    ACS Nano; 2024 Sep; 18(37):25636-25646. PubMed ID: 39235312
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cu-Al spinel oxide as an efficient catalyst for methanol steam reforming.
    Xi H; Hou X; Liu Y; Qing S; Gao Z
    Angew Chem Int Ed Engl; 2014 Oct; 53(44):11886-9. PubMed ID: 25213737
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Methanol Steam Reforming for Hydrogen Production over Ni-Based Catalysts: State-Of-The-Art Review and Future Prospects.
    Hu B; Shu R; Khairun HS; Tian Z; Wang C; Kumar Gupta N
    Chem Asian J; 2024 Aug; 19(16):e202400217. PubMed ID: 38752326
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of a commercial water-gas shift catalyst and La modified Cu-based catalysts prepared by deposition-precipitation in methanol steam reforming.
    Özcan O; Akin AN
    Turk J Chem; 2022; 46(4):1069-1080. PubMed ID: 37538757
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrogen Production from Methanol Steam Reforming over Fe-Modified Cu/CeO
    Słowik G; Rotko M; Ryczkowski J; Greluk M
    Molecules; 2024 Aug; 29(16):. PubMed ID: 39203041
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Maximizing the Synergistic Effect of CoNi Catalyst on α-MoC for Robust Hydrogen Production.
    Ge Y; Qin X; Li A; Deng Y; Lin L; Zhang M; Yu Q; Li S; Peng M; Xu Y; Zhao X; Xu M; Zhou W; Yao S; Ma D
    J Am Chem Soc; 2021 Jan; 143(2):628-633. PubMed ID: 33382262
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Achieving efficient and robust catalytic reforming on dual-sites of Cu species.
    Ma K; Tian Y; Zhao ZJ; Cheng Q; Ding T; Zhang J; Zheng L; Jiang Z; Abe T; Tsubaki N; Gong J; Li X
    Chem Sci; 2019 Mar; 10(9):2578-2584. PubMed ID: 30996972
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Catalysts for Hydrogen Generation via Oxy-Steam Reforming of Methanol Process.
    Mosińska M; Szynkowska-Jóźwik MI; Mierczyński P
    Materials (Basel); 2020 Dec; 13(24):. PubMed ID: 33302526
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Designing Cu
    Meng H; Yang Y; Shen T; Yin Z; Wang L; Liu W; Yin P; Ren Z; Zheng L; Zhang J; Xiao FS; Wei M
    Nat Commun; 2023 Dec; 14(1):7980. PubMed ID: 38042907
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly Active Au/δ-MoC and Cu/δ-MoC Catalysts for the Conversion of CO2: The Metal/C Ratio as a Key Factor Defining Activity, Selectivity, and Stability.
    Posada-Pérez S; Ramírez PJ; Evans J; Viñes F; Liu P; Illas F; Rodriguez JA
    J Am Chem Soc; 2016 Jul; 138(26):8269-78. PubMed ID: 27308923
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Silver and Copper Dual Single Atoms Boosting Direct Oxidation of Methane to Methanol via Synergistic Catalysis.
    Yu B; Cheng L; Dai S; Jiang Y; Yang B; Li H; Zhao Y; Xu J; Zhang Y; Pan C; Cao XM; Zhu Y; Lou Y
    Adv Sci (Weinh); 2023 Sep; 10(26):e2302143. PubMed ID: 37401146
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Methanol as a Hydrogen Carrier: Kinetic and Thermodynamic Drivers for its CO
    Frei MS; Mondelli C; Short MIM; Pérez-Ramírez J
    ChemSusChem; 2020 Dec; 13(23):6330-6337. PubMed ID: 32706140
    [TBL] [Abstract][Full Text] [Related]  

  • 20. First-principles-based microkinetic modeling of methanol steam reforming over Cu(111) and Cu(211): structure sensitive activity and selectivity.
    Zhang X; Yang B
    Dalton Trans; 2024 Oct; 53(42):17190-17199. PubMed ID: 39373753
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.