These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 38205234)

  • 21. Hydrogen Production by Three-Stage (i) Pyrolysis, (ii) Catalytic Steam Reforming, and (iii) Water Gas Shift Processing of Waste Plastic.
    Alshareef R; Nahil MA; Williams PT
    Energy Fuels; 2023 Mar; 37(5):3894-3907. PubMed ID: 36897817
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bimetallic NiFe Nanoparticles Supported on CeO
    Braga A; Armengol-Profitós M; Pascua-Solé L; Vendrell X; Soler L; Serrano I; Villar-Garcia IJ; Pérez-Dieste V; Divins NJ; Llorca J
    ACS Appl Nano Mater; 2023 May; 6(9):7173-7185. PubMed ID: 37205295
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hydrogen production from steam reforming of acetic acid over Cu-Zn supported calcium aluminate.
    Mohanty P; Patel M; Pant KK
    Bioresour Technol; 2012 Nov; 123():558-65. PubMed ID: 22944490
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hybrid Mo-C
    Mu J; Shi J; France LJ; Wu Y; Zeng Q; Liu B; Jiang L; Long J; Li X
    ACS Appl Mater Interfaces; 2018 Jul; 10(27):23112-23121. PubMed ID: 29923708
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A novel nano-Ni/SiO2 catalyst for hydrogen production from steam reforming of ethanol.
    Wu C; Williams PT
    Environ Sci Technol; 2010 Aug; 44(15):5993-8. PubMed ID: 20597551
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Impregnated and Co-precipitated Pd-Ga
    Rameshan C; Lorenz H; Armbrüster M; Kasatkin I; Klötzer B; Götsch T; Ploner K; Penner S
    Catal Letters; 2018; 148(10):3062-3071. PubMed ID: 30393448
    [TBL] [Abstract][Full Text] [Related]  

  • 27. DFT study the water-gas shift reaction over Cu/α-MoC surface.
    Zou XY; Mi L; Zuo ZJ; Gao ZH; Huang W
    J Mol Model; 2020 Aug; 26(9):237. PubMed ID: 32812072
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Reactive metal-support interaction in the Cu-In
    Ploner K; Schlicker L; Gili A; Gurlo A; Doran A; Zhang L; Armbrüster M; Obendorf D; Bernardi J; Klötzer B; Penner S
    Sci Technol Adv Mater; 2019; 20(1):356-366. PubMed ID: 31068984
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Design and operation performance of the plate-heat transfer type hydrogen production reactor for bio-methanol reforming.
    Liu H; Li Y; Lu C; Zhang Z; Xiang G; Yang X; Zhang Q
    Bioresour Technol; 2023 Oct; 386():129509. PubMed ID: 37473786
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Steam reforming of ethanol for hydrogen production over Cu/Co-Mg-Al-based catalysts prepared by hydrotalcite route.
    Homsi D; Rached JA; Aouad S; Gennequin C; Dahdah E; Estephane J; Tidahy HL; Aboukaïs A; Abi-Aad E
    Environ Sci Pollut Res Int; 2017 Apr; 24(11):9907-9913. PubMed ID: 27552997
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Efficient Low-temperature Hydrogen Production by Electrochemical-assisted Methanol Steam Reforming.
    Liu Q; Du S; Liu T; Gong L; Wu Y; Lin J; Yang P; Huang G; Li M; Wu Y; Zhou Y; Li Y; Tao L; Wang S
    Angew Chem Int Ed Engl; 2024 Feb; 63(7):e202315157. PubMed ID: 38143245
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The sol-gel autocombustion as a route towards highly CO
    Ploner K; Delir Kheyrollahi Nezhad P; Gili A; Kamutzki F; Gurlo A; Doran A; Cao P; Heggen M; Köwitsch N; Armbrüster M; Watschinger M; Klötzer B; Penner S
    Mater Chem Front; 2021 Jun; 5(13):5093-5105. PubMed ID: 34262777
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Polyoxometalate-HKUST-1 composite derived nanostructured Na-Cu-Mo
    Singh G; Panda S; Sapan S; Singh J; Chandewar PR; Biradar AV; Shee D; Bordoloi A
    Nanoscale; 2024 Jul; 16(29):14066-14080. PubMed ID: 38995159
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A MEMS methanol reformer heated by decomposition of hydrogen peroxide.
    Kim T; Hwang JS; Kwon S
    Lab Chip; 2007 Jul; 7(7):835-41. PubMed ID: 17594001
    [TBL] [Abstract][Full Text] [Related]  

  • 35. CO
    Guzmán H; Salomone F; Bensaid S; Castellino M; Russo N; Hernández S
    ACS Appl Mater Interfaces; 2022 Jan; 14(1):517-530. PubMed ID: 34965095
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of P:Ni Ratio on Methanol Steam Reforming on Nickel Phosphide Catalysts.
    Almithn A
    Molecules; 2023 Aug; 28(16):. PubMed ID: 37630331
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bi-modified Cu-Based Catalysts for Acetylene Hydrogenation: Leveraging Dispersion and Hydrogen Spillover.
    Zhou S; Zeng A; Lu C; Wang M; Zhou C; Li Q; Dong L; Wang A; Tan L
    Inorg Chem; 2024 Jun; 63(25):11802-11811. PubMed ID: 38861686
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Atomically dispersed Ir/α-MoC catalyst with high metal loading and thermal stability for water-promoted hydrogenation reaction.
    Li S; Cao R; Xu M; Deng Y; Lin L; Yao S; Liang X; Peng M; Gao Z; Ge Y; Liu JX; Li WX; Zhou W; Ma D
    Natl Sci Rev; 2022 Jan; 9(1):nwab026. PubMed ID: 35111329
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Performance of Cu/ZnO Nanosheets on Electrospun Al
    Maor II; Heyte S; Elishav O; Mann-Lahav M; Thuriot-Roukos J; Paul S; Grader GS
    Nanomaterials (Basel); 2023 Feb; 13(4):. PubMed ID: 36839003
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Interplay of Support Chemistry and Reaction Conditions on Copper Catalyzed Methanol Steam Reforming.
    Díaz-Pérez MA; Moya J; Serrano-Ruiz JC; Faria J
    Ind Eng Chem Res; 2018 Nov; 57(45):15268-15279. PubMed ID: 30487661
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.