These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 38205336)

  • 1. Antibacterial and osteoinductive properties of wollastonite scaffolds impregnated with propolis produced by additive manufacturing.
    Moreno Florez AI; Malagon S; Ocampo S; Leal-Marin S; Gil González JH; Diaz-Cano A; Lopera A; Paucar C; Ossa A; Glasmacher B; Peláez-Vargas A; Garcia C
    Heliyon; 2024 Jan; 10(1):e23955. PubMed ID: 38205336
    [TBL] [Abstract][Full Text] [Related]  

  • 2.
    Moreno Florez AI; Malagon S; Ocampo S; Leal-Marin S; Ossa EA; Glasmacher B; Garcia C; Pelaez-Vargas A
    Front Bioeng Biotechnol; 2024; 12():1321466. PubMed ID: 38361789
    [No Abstract]   [Full Text] [Related]  

  • 3. Effects of Propolis Impregnation on Polylactic Acid (PLA) Scaffolds Loaded with Wollastonite Particles against
    Moreno AI; Orozco Y; Ocampo S; Malagón S; Ossa A; Peláez-Vargas A; Paucar C; Lopera A; Garcia C
    Polymers (Basel); 2023 Jun; 15(12):. PubMed ID: 37376275
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D printed TPMS structural PLA/GO scaffold: Process parameter optimization, porous structure, mechanical and biological properties.
    Guo W; Yang Y; Liu C; Bu W; Guo F; Li J; Wang E; Peng Z; Mai H; You H; Long Y
    J Mech Behav Biomed Mater; 2023 Jun; 142():105848. PubMed ID: 37099921
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The design of strut/TPMS-based pore geometries in bioceramic scaffolds guiding osteogenesis and angiogenesis in bone regeneration.
    Li Y; Li J; Jiang S; Zhong C; Zhao C; Jiao Y; Shen J; Chen H; Ye M; Zhou J; Yang X; Gou Z; Xu S; Shen M
    Mater Today Bio; 2023 Jun; 20():100667. PubMed ID: 37273795
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantifying the discrepancies in the geometric and mechanical properties of the theoretically designed and additively manufactured scaffolds.
    Lu Y; Cui Z; Cheng L; Li J; Yang Z; Zhu H; Wu C
    J Mech Behav Biomed Mater; 2020 Dec; 112():104080. PubMed ID: 32927278
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydroxyapatite 3D-printed scaffolds with Gyroid-Triply periodic minimal surface porous structure: Fabrication and an in vivo pilot study in sheep.
    Bouakaz I; Drouet C; Grossin D; Cobraiville E; Nolens G
    Acta Biomater; 2023 Oct; 170():580-595. PubMed ID: 37673232
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D Propolis-Sodium Alginate Scaffolds: Influence on Structural Parameters, Release Mechanisms, Cell Cytotoxicity and Antibacterial Activity.
    Aranci K; Uzun M; Su S; Cesur S; Ulag S; Amin A; Guncu MM; Aksu B; Kolayli S; Ustundag CB; Silva JC; Ficai D; Ficai A; Gunduz O
    Molecules; 2020 Nov; 25(21):. PubMed ID: 33147742
    [TBL] [Abstract][Full Text] [Related]  

  • 9.
    Noroozi R; Shamekhi MA; Mahmoudi R; Zolfagharian A; Asgari F; Mousavizadeh A; Bodaghi M; Hadi A; Haghighipour N
    Biomed Mater; 2022 Jun; 17(4):. PubMed ID: 35609602
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design, Stereolithographic 3D Printing, and Characterization of TPMS Scaffolds.
    Gabrieli R; Wenger R; Mazza M; Verné E; Baino F
    Materials (Basel); 2024 Jan; 17(3):. PubMed ID: 38591518
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Triple PLGA/PCL Scaffold Modification Including Silver Impregnation, Collagen Coating, and Electrospinning Significantly Improve Biocompatibility, Antimicrobial, and Osteogenic Properties for Orofacial Tissue Regeneration.
    Qian Y; Zhou X; Zhang F; Diekwisch TGH; Luan X; Yang J
    ACS Appl Mater Interfaces; 2019 Oct; 11(41):37381-37396. PubMed ID: 31517483
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanical, Structural, and Biological Characteristics of Polylactide/Wollastonite 3D Printed Scaffolds.
    Choudhary R; Bulygina I; Lvov V; Zimina A; Zhirnov S; Kolesnikov E; Leybo D; Anisimova N; Kiselevskiy M; Kirsanova M; Senatov F
    Polymers (Basel); 2022 Sep; 14(19):. PubMed ID: 36235880
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Porous polylactic acid scaffolds for bone regeneration: A study of additively manufactured triply periodic minimal surfaces and their osteogenic potential.
    Diez-Escudero A; Harlin H; Isaksson P; Persson C
    J Tissue Eng; 2020; 11():2041731420956541. PubMed ID: 33224463
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of design, porosity and biodegradation on mechanical and morphological properties of additive-manufactured triply periodic minimal surface scaffolds.
    Karimipour-Fard P; Behravesh AH; Jones-Taggart H; Pop-Iliev R; Rizvi G
    J Mech Behav Biomed Mater; 2020 Dec; 112():104064. PubMed ID: 32911225
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioceramic scaffolds with triply periodic minimal surface architectures guide early-stage bone regeneration.
    Shen M; Li Y; Lu F; Gou Y; Zhong C; He S; Zhao C; Yang G; Zhang L; Yang X; Gou Z; Xu S
    Bioact Mater; 2023 Jul; 25():374-386. PubMed ID: 36865987
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integrated additive design and manufacturing approach for the bioengineering of bone scaffolds for favorable mechanical and biological properties.
    Valainis D; Dondl P; Foehr P; Burgkart R; Kalkhof S; Duda GN; van Griensven M; Poh PSP
    Biomed Mater; 2019 Sep; 14(6):065002. PubMed ID: 31387088
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antimicrobial and Biodegradable 3D Printed Scaffolds for Orthopedic Infections.
    Dubey A; Vahabi H; Kumaravel V
    ACS Biomater Sci Eng; 2023 Jul; 9(7):4020-4044. PubMed ID: 37339247
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fatigue behavior of As-built selective laser melted titanium scaffolds with sheet-based gyroid microarchitecture for bone tissue engineering.
    Kelly CN; Francovich J; Julmi S; Safranski D; Guldberg RE; Maier HJ; Gall K
    Acta Biomater; 2019 Aug; 94():610-626. PubMed ID: 31125727
    [TBL] [Abstract][Full Text] [Related]  

  • 19. TPMS Microarchitectures for Vertical Bone Augmentation and Osteoconduction: An In Vivo Study.
    Maevskaia E; Ghayor C; Bhattacharya I; Guerrero J; Weber FE
    Materials (Basel); 2024 May; 17(11):. PubMed ID: 38893806
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polycaprolactone fibrous electrospun scaffolds reinforced with copper doped wollastonite for bone tissue engineering applications.
    Abudhahir M; Saleem A; Paramita P; Kumar SD; Tze-Wen C; Selvamurugan N; Moorthi A
    J Biomed Mater Res B Appl Biomater; 2021 May; 109(5):654-664. PubMed ID: 32935919
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.