These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 38205336)

  • 21. 3D printing of Ti
    Mi X; Su Z; Fu Y; Li S; Mo A
    Biomed Mater; 2022 Apr; 17(3):. PubMed ID: 35316803
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Engineering a multifunctional 3D-printed PLA-collagen-minocycline-nanoHydroxyapatite scaffold with combined antimicrobial and osteogenic effects for bone regeneration.
    Martin V; Ribeiro IA; Alves MM; Gonçalves L; Claudio RA; Grenho L; Fernandes MH; Gomes P; Santos CF; Bettencourt AF
    Mater Sci Eng C Mater Biol Appl; 2019 Aug; 101():15-26. PubMed ID: 31029308
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Osteoregenerative Potential of 3D-Printed Poly
    Lawrence LM; Salary RR; Miller V; Valluri A; Denning KL; Case-Perry S; Abdelgaber K; Smith S; Claudio PP; Day JB
    Int J Mol Sci; 2023 Mar; 24(5):. PubMed ID: 36902373
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Anti-infective efficacy, cytocompatibility and biocompatibility of a 3D-printed osteoconductive composite scaffold functionalized with quaternized chitosan.
    Yang Y; Yang S; Wang Y; Yu Z; Ao H; Zhang H; Qin L; Guillaume O; Eglin D; Richards RG; Tang T
    Acta Biomater; 2016 Dec; 46():112-128. PubMed ID: 27686039
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biomimetic scaffolds using triply periodic minimal surface-based porous structures for biomedical applications.
    Pugliese R; Graziosi S
    SLAS Technol; 2023 Jun; 28(3):165-182. PubMed ID: 37127136
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fabrication of polycaprolactone/calcium phosphates hybrid scaffolds impregnated with plant extracts using 3D printing for potential bone regeneration.
    Garcia C; Orozco Y; Betancur A; Moreno AI; Fuentes K; Lopera A; Suarez O; Lobo T; Ossa A; Peláez-Vargas A; Paucar C
    Heliyon; 2023 Feb; 9(2):e13176. PubMed ID: 36798758
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evaluation of the Antibacterial Activity of Green Propolis Extract and Meadowsweet Extract Against Staphylococcus aureus Bacteria: Importance in Would Care Compounding Preparations.
    Lupatini NR; Danopoulos P; Swikidisa R; Alves PV
    Int J Pharm Compd; 2016; 20(4):333-337. PubMed ID: 28333678
    [TBL] [Abstract][Full Text] [Related]  

  • 28. 3D-printed β-TCP/S53P4 bioactive glass scaffolds coated with tea tree oil: Coating optimization, in vitro bioactivity and antibacterial properties.
    Alves APN; Arango-Ospina M; Oliveira RLMS; Ferreira IM; de Moraes EG; Hartmann M; de Oliveira APN; Boccaccini AR; de Sousa Trichês E
    J Biomed Mater Res B Appl Biomater; 2023 Apr; 111(4):881-894. PubMed ID: 36440654
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Robocasting of Ceramic Fischer-Koch S Scaffolds for Bone Tissue Engineering.
    Baumer V; Gunn E; Riegle V; Bailey C; Shonkwiler C; Prawel D
    J Funct Biomater; 2023 Apr; 14(5):. PubMed ID: 37233361
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Numerical and experimental evaluation of TPMS Gyroid scaffolds for bone tissue engineering.
    Castro APG; Ruben RB; Gonçalves SB; Pinheiro J; Guedes JM; Fernandes PR
    Comput Methods Biomech Biomed Engin; 2019 May; 22(6):567-573. PubMed ID: 30773050
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mechanical Characterisation and Numerical Modelling of TPMS-Based Gyroid and Diamond Ti6Al4V Scaffolds for Bone Implants: An Integrated Approach for Translational Consideration.
    Naghavi SA; Tamaddon M; Marghoub A; Wang K; Babamiri BB; Hazeli K; Xu W; Lu X; Sun C; Wang L; Moazen M; Wang L; Li D; Liu C
    Bioengineering (Basel); 2022 Sep; 9(10):. PubMed ID: 36290472
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Additive manufacturing of bioactive and biodegradable porous iron-akermanite composites for bone regeneration.
    Putra NE; Borg KGN; Diaz-Payno PJ; Leeflang MA; Klimopoulou M; Taheri P; Mol JMC; Fratila-Apachitei LE; Huan Z; Chang J; Zhou J; Zadpoor AA
    Acta Biomater; 2022 Aug; 148():355-373. PubMed ID: 35690326
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Permeability and mechanical properties of gradient porous PDMS scaffolds fabricated by 3D-printed sacrificial templates designed with minimal surfaces.
    Montazerian H; Mohamed MGA; Montazeri MM; Kheiri S; Milani AS; Kim K; Hoorfar M
    Acta Biomater; 2019 Sep; 96():149-160. PubMed ID: 31252172
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Development of 3D Bioactive Scaffolds through 3D Printing Using Wollastonite-Gelatin Inks.
    Curti F; Stancu IC; Voicu G; Iovu H; Dobrita CI; Ciocan LT; Marinescu R; Iordache F
    Polymers (Basel); 2020 Oct; 12(10):. PubMed ID: 33092270
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Idealization through interactive modeling and experimental assessment of 3D-printed gyroid for trabecular bone scaffold.
    Tripathi Y; Shukla M; Bhatt AD
    Proc Inst Mech Eng H; 2021 Sep; 235(9):1025-1034. PubMed ID: 34058889
    [TBL] [Abstract][Full Text] [Related]  

  • 36. In vitro evaluation of electrochemically bioactivated Ti6Al4V 3D porous scaffolds.
    Myakinin A; Turlybekuly A; Pogrebnjak A; Mirek A; Bechelany M; Liubchak I; Oleshko O; Husak Y; Korniienko V; Leśniak-Ziółkowska K; Dogadkin D; Banasiuk R; Moskalenko R; Pogorielov M; Simka W
    Mater Sci Eng C Mater Biol Appl; 2021 Feb; 121():111870. PubMed ID: 33579496
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Preparation of antibacterial and osteoconductive 3D-printed PLGA/Cu(I)@ZIF-8 nanocomposite scaffolds for infected bone repair.
    Zou F; Jiang J; Lv F; Xia X; Ma X
    J Nanobiotechnology; 2020 Feb; 18(1):39. PubMed ID: 32103765
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Antibacterial 3D-Printed Silver Nanoparticle/Poly Lactic-Co-Glycolic Acid (PLGA) Scaffolds for Bone Tissue Engineering.
    Chen F; Han J; Guo Z; Mu C; Yu C; Ji Z; Sun L; Wang Y; Wang J
    Materials (Basel); 2023 May; 16(11):. PubMed ID: 37297029
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Research and analysis of the properties of bredigite-based 3D-printed bone scaffolds.
    Liu D; Zhou X; Wang F; Feng Y; Shi Y
    Int J Bioprint; 2023; 9(3):708. PubMed ID: 37273998
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Bone Tissue Engineering (BTE) of the Craniofacial Skeleton, Part I: Evolution and Optimization of 3D-Printed Scaffolds for Repair of Defects.
    Nayak VV; Slavin B; Bergamo ETP; Boczar D; Slavin BR; Runyan CM; Tovar N; Witek L; Coelho PG
    J Craniofac Surg; 2023 Oct; 34(7):2016-2025. PubMed ID: 37639650
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.