These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 38205551)

  • 61. Corticospinal excitability of the biceps brachii is higher during arm cycling than an intensity-matched tonic contraction.
    Forman D; Raj A; Button DC; Power KE
    J Neurophysiol; 2014 Sep; 112(5):1142-51. PubMed ID: 24899677
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Inhibitory action of forearm flexor muscle afferents on corticospinal outputs to antagonist muscles in humans.
    Bertolasi L; Priori A; Tinazzi M; Bertasi V; Rothwell JC
    J Physiol; 1998 Sep; 511 ( Pt 3)(Pt 3):947-56. PubMed ID: 9714872
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Input-output characteristics of soleus homonymous Ia afferents and corticospinal pathways during upright standing differ between young and elderly adults.
    Baudry S; Penzer F; Duchateau J
    Acta Physiol (Oxf); 2014 Mar; 210(3):667-77. PubMed ID: 24433254
    [TBL] [Abstract][Full Text] [Related]  

  • 64. F-wave of single firing motor units: correct or misleading criterion of motoneuron excitability in humans?
    Kudina LP; Andreeva RE
    Neurol Sci; 2017 Mar; 38(3):465-472. PubMed ID: 28039540
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Evidence for existence of trunk-limb neural interaction in the corticospinal pathway.
    Sasaki A; Milosevic M; Sekiguchi H; Nakazawa K
    Neurosci Lett; 2018 Mar; 668():31-36. PubMed ID: 29309857
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Changes in corticomotor excitability of hand muscles in relation to static shoulder positions.
    Ginanneschi F; Del Santo F; Dominici F; Gelli F; Mazzocchio R; Rossi A
    Exp Brain Res; 2005 Mar; 161(3):374-82. PubMed ID: 15517216
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Motor imagery of voluntary muscle relaxation of the foot induces a temporal reduction of corticospinal excitability in the hand.
    Kato K; Kanosue K
    Neurosci Lett; 2018 Mar; 668():67-72. PubMed ID: 29305917
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Variation of corticospinal excitability during kinesthetic illusion induced by musculotendinous vibration.
    Lauzier L; Perron MP; Munger L; Bouchard É; Abboud J; Nougarou F; Beaulieu LD
    J Neurophysiol; 2023 Nov; 130(5):1118-1125. PubMed ID: 37706230
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Muscarinic receptor blockade causes postcontraction enhancement in corticospinal excitability following maximal contractions.
    Dempsey LM; Kavanagh JJ
    J Neurophysiol; 2021 Apr; 125(4):1269-1278. PubMed ID: 33625939
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Task-dependent changes of corticospinal excitability during observation and motor imagery of balance tasks.
    Mouthon A; Ruffieux J; Wälchli M; Keller M; Taube W
    Neuroscience; 2015 Sep; 303():535-43. PubMed ID: 26192097
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Enhanced availability of serotonin limits muscle activation during high-intensity, but not low-intensity, fatiguing contractions.
    Henderson TT; Taylor JL; Thorstensen JR; Tucker MG; Kavanagh JJ
    J Neurophysiol; 2022 Oct; 128(4):751-762. PubMed ID: 36001790
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Cortical and reticular contributions to human precision and power grip.
    Tazoe T; Perez MA
    J Physiol; 2017 Apr; 595(8):2715-2730. PubMed ID: 27891607
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Corticospinal modulation of vibration-induced H-reflex depression.
    Bringman CL; Shields RK; DeJong SL
    Exp Brain Res; 2022 Mar; 240(3):803-812. PubMed ID: 35044475
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Cortical and spinal excitabilities are differently balanced in power athletes.
    Grosprêtre S; Bouguetoch A; Martin A
    Eur J Sport Sci; 2020 Apr; 20(3):415-425. PubMed ID: 31203789
    [TBL] [Abstract][Full Text] [Related]  

  • 75. The recruitment of indirect waves within primary motor cortex during motor imagery: A directional transcranial magnetic stimulation study.
    Neige C; Ciechelski V; Lebon F
    Eur J Neurosci; 2022 Dec; 56(12):6187-6200. PubMed ID: 36215136
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Control of transmission in muscle group IA afferents during fictive locomotion in the cat.
    Gossard JP
    J Neurophysiol; 1996 Dec; 76(6):4104-12. PubMed ID: 8985904
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Inter-muscle differences in modulation of motor evoked potentials and posterior root-muscle reflexes evoked from lower-limb muscles during agonist and antagonist muscle contractions.
    Saito A; Nakagawa K; Masugi Y; Nakazawa K
    Exp Brain Res; 2021 Feb; 239(2):463-474. PubMed ID: 33221989
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Electrical Stimulation of Back Muscles Does Not Prime the Corticospinal Pathway.
    Elgueta-Cancino E; Massé-Alarie H; Schabrun SM; Hodges PW
    Neuromodulation; 2019 Jul; 22(5):555-563. PubMed ID: 31232503
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Decline in voluntary activation contributes to reduced maximal performance of fatigued human lower limb muscles.
    Mileva KN; Sumners DP; Bowtell JL
    Eur J Appl Physiol; 2012 Dec; 112(12):3959-70. PubMed ID: 22434254
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Fatigue diminishes motoneuronal excitability during cycling exercise.
    Weavil JC; Sidhu SK; Mangum TS; Richardson RS; Amann M
    J Neurophysiol; 2016 Oct; 116(4):1743-1751. PubMed ID: 27440242
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.