These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
392 related articles for article (PubMed ID: 38205634)
1. Bioprinting: Mechanical Stabilization and Reinforcement Strategies in Regenerative Medicine. Ballard A; Patush R; Perez J; Juarez C; Kirillova A Tissue Eng Part A; 2024 Jul; 30(13-14):387-408. PubMed ID: 38205634 [TBL] [Abstract][Full Text] [Related]
2. Advancing bioinks for 3D bioprinting using reactive fillers: A review. Heid S; Boccaccini AR Acta Biomater; 2020 Sep; 113():1-22. PubMed ID: 32622053 [TBL] [Abstract][Full Text] [Related]
3. 3D-bioprinted functional and biomimetic hydrogel scaffolds incorporated with nanosilicates to promote bone healing in rat calvarial defect model. Liu B; Li J; Lei X; Cheng P; Song Y; Gao Y; Hu J; Wang C; Zhang S; Li D; Wu H; Sang H; Bi L; Pei G Mater Sci Eng C Mater Biol Appl; 2020 Jul; 112():110905. PubMed ID: 32409059 [TBL] [Abstract][Full Text] [Related]
4. Nanocomposite bioinks for 3D bioprinting. Cai Y; Chang SY; Gan SW; Ma S; Lu WF; Yen CC Acta Biomater; 2022 Oct; 151():45-69. PubMed ID: 35970479 [TBL] [Abstract][Full Text] [Related]
5. High-Fidelity Extrusion Bioprinting of Low-Printability Polymers Using Carbopol as a Rheology Modifier. Barreiro Carpio M; Gonzalez Martinez E; Dabaghi M; Ungureanu J; Arizpe Tafoya AV; Gonzalez Martinez DA; Hirota JA; Moran-Mirabal JM ACS Appl Mater Interfaces; 2023 Nov; 15(47):54234-54248. PubMed ID: 37964517 [TBL] [Abstract][Full Text] [Related]
6. Collagen-based bioinks for hard tissue engineering applications: a comprehensive review. Marques CF; Diogo GS; Pina S; Oliveira JM; Silva TH; Reis RL J Mater Sci Mater Med; 2019 Mar; 30(3):32. PubMed ID: 30840132 [TBL] [Abstract][Full Text] [Related]
7. Recent Trends in Decellularized Extracellular Matrix Bioinks for 3D Printing: An Updated Review. Dzobo K; Motaung KSCM; Adesida A Int J Mol Sci; 2019 Sep; 20(18):. PubMed ID: 31540457 [TBL] [Abstract][Full Text] [Related]
8. Employing PEG crosslinkers to optimize cell viability in gel phase bioinks and tailor post printing mechanical properties. Rutz AL; Gargus ES; Hyland KE; Lewis PL; Setty A; Burghardt WR; Shah RN Acta Biomater; 2019 Nov; 99():121-132. PubMed ID: 31539655 [TBL] [Abstract][Full Text] [Related]
10. Hydrogel Bioink Reinforcement for Additive Manufacturing: A Focused Review of Emerging Strategies. Chimene D; Kaunas R; Gaharwar AK Adv Mater; 2020 Jan; 32(1):e1902026. PubMed ID: 31599073 [TBL] [Abstract][Full Text] [Related]
11. Bioprinting 101: Design, Fabrication, and Evaluation of Cell-Laden 3D Bioprinted Scaffolds. Deo KA; Singh KA; Peak CW; Alge DL; Gaharwar AK Tissue Eng Part A; 2020 Mar; 26(5-6):318-338. PubMed ID: 32079490 [TBL] [Abstract][Full Text] [Related]
12. Noninvasive Three-Dimensional Ning L; Zhu N; Smith A; Rajaram A; Hou H; Srinivasan S; Mohabatpour F; He L; Mclnnes A; Serpooshan V; Papagerakis P; Chen X ACS Appl Mater Interfaces; 2021 Jun; 13(22):25611-25623. PubMed ID: 34038086 [TBL] [Abstract][Full Text] [Related]
13. 3D bioprinting of urethra with PCL/PLCL blend and dual autologous cells in fibrin hydrogel: An in vitro evaluation of biomimetic mechanical property and cell growth environment. Zhang K; Fu Q; Yoo J; Chen X; Chandra P; Mo X; Song L; Atala A; Zhao W Acta Biomater; 2017 Mar; 50():154-164. PubMed ID: 27940192 [TBL] [Abstract][Full Text] [Related]
14. Embedded bioprinting for designer 3D tissue constructs with complex structural organization. Zeng X; Meng Z; He J; Mao M; Li X; Chen P; Fan J; Li D Acta Biomater; 2022 Mar; 140():1-22. PubMed ID: 34875360 [TBL] [Abstract][Full Text] [Related]
15. Recent Advances in Hydrogel-Based 3D Bioprinting and Its Potential Application in the Treatment of Congenital Heart Disease. Salih T; Caputo M; Ghorbel MT Biomolecules; 2024 Jul; 14(7):. PubMed ID: 39062575 [TBL] [Abstract][Full Text] [Related]
16. Exploiting the role of nanoparticles for use in hydrogel-based bioprinting applications: concept, design, and recent advances. Chakraborty A; Roy A; Ravi SP; Paul A Biomater Sci; 2021 Sep; 9(19):6337-6354. PubMed ID: 34397056 [TBL] [Abstract][Full Text] [Related]
17. Advances in Extrusion 3D Bioprinting: A Focus on Multicomponent Hydrogel-Based Bioinks. Cui X; Li J; Hartanto Y; Durham M; Tang J; Zhang H; Hooper G; Lim K; Woodfield T Adv Healthc Mater; 2020 Aug; 9(15):e1901648. PubMed ID: 32352649 [TBL] [Abstract][Full Text] [Related]
18. Printability and bio-functionality of a shear thinning methacrylated xanthan-gelatin composite bioink. Garcia-Cruz MR; Postma A; Frith JE; Meagher L Biofabrication; 2021 Apr; 13(3):. PubMed ID: 33662950 [TBL] [Abstract][Full Text] [Related]
19. Bio-inspired hydrogel composed of hyaluronic acid and alginate as a potential bioink for 3D bioprinting of articular cartilage engineering constructs. Antich C; de Vicente J; Jiménez G; Chocarro C; Carrillo E; Montañez E; Gálvez-Martín P; Marchal JA Acta Biomater; 2020 Apr; 106():114-123. PubMed ID: 32027992 [TBL] [Abstract][Full Text] [Related]
20. Boron nitride nanotubes reinforced gelatin hydrogel-based ink for bioprinting and tissue engineering applications. Kakarla AB; Kong I; Nguyen TH; Kong C; Irving H Biomater Adv; 2022 Oct; 141():213103. PubMed ID: 36084352 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]