These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 38205712)
1. MRI-Based Kinetic Heterogeneity Evaluation in the Accurate Access of Axillary Lymph Node Status in Breast Cancer Using a Hybrid CNN-RNN Model. Guo YJ; Yin R; Zhang Q; Han JQ; Dou ZX; Wang PB; Lu H; Liu PF; Chen JJ; Ma WJ J Magn Reson Imaging; 2024 Oct; 60(4):1352-1364. PubMed ID: 38205712 [TBL] [Abstract][Full Text] [Related]
2. Attention-based Deep Learning for the Preoperative Differentiation of Axillary Lymph Node Metastasis in Breast Cancer on DCE-MRI. Gao J; Zhong X; Li W; Li Q; Shao H; Wang Z; Dai Y; Ma H; Shi Y; Zhang H; Duan S; Zhang K; Yang P; Zhao F; Zhang H; Xie H; Mao N J Magn Reson Imaging; 2023 Jun; 57(6):1842-1853. PubMed ID: 36219519 [TBL] [Abstract][Full Text] [Related]
3. Differentiating axillary lymph node metastasis in invasive breast cancer patients: A comparison of radiomic signatures from multiparametric breast MR sequences. Chai R; Ma H; Xu M; Arefan D; Cui X; Liu Y; Zhang L; Wu S; Xu K J Magn Reson Imaging; 2019 Oct; 50(4):1125-1132. PubMed ID: 30848041 [TBL] [Abstract][Full Text] [Related]
4. Preoperative prediction of lymphovascular invasion in invasive breast cancer with dynamic contrast-enhanced-MRI-based radiomics. Liu Z; Feng B; Li C; Chen Y; Chen Q; Li X; Guan J; Chen X; Cui E; Li R; Li Z; Long W J Magn Reson Imaging; 2019 Sep; 50(3):847-857. PubMed ID: 30773770 [TBL] [Abstract][Full Text] [Related]
5. Radiomics Nomogram Based on Dual-Sequence MRI for Assessing Ki-67 Expression in Breast Cancer. Zhang L; Shen M; Zhang D; He X; Du Q; Liu N; Huang X J Magn Reson Imaging; 2024 Sep; 60(3):1203-1212. PubMed ID: 38088478 [TBL] [Abstract][Full Text] [Related]
6. Multiregional dynamic contrast-enhanced MRI-based integrated system for predicting pathological complete response of axillary lymph node to neoadjuvant chemotherapy in breast cancer: multicentre study. Li Z; Gao J; Zhou H; Li X; Zheng T; Lin F; Wang X; Chu T; Wang Q; Wang S; Cao K; Liang Y; Zhao F; Xie H; Xu C; Zhang H; Niu Q; Ma H; Mao N EBioMedicine; 2024 Sep; 107():105311. PubMed ID: 39191174 [TBL] [Abstract][Full Text] [Related]
7. Non-invasive prediction of axillary lymph node dissection exemption in breast cancer patients post-neoadjuvant therapy: A radiomics and deep learning analysis on longitudinal DCE-MRI data. Yu Y; Chen R; Yi J; Huang K; Yu X; Zhang J; Song C Breast; 2024 Oct; 77():103786. PubMed ID: 39137488 [TBL] [Abstract][Full Text] [Related]
8. Multitask Deep Learning-Based Whole-Process System for Automatic Diagnosis of Breast Lesions and Axillary Lymph Node Metastasis Discrimination from Dynamic Contrast-Enhanced-MRI: A Multicenter Study. Zhou H; Hua Z; Gao J; Lin F; Chen Y; Zhang S; Zheng T; Wang Z; Shao H; Li W; Liu F; Li Q; Chen J; Wang X; Zhao F; Qu N; Xie H; Ma H; Zhang H; Mao N J Magn Reson Imaging; 2024 May; 59(5):1710-1722. PubMed ID: 37497811 [TBL] [Abstract][Full Text] [Related]
9. Magnetic resonance imaging radiomics predicts preoperative axillary lymph node metastasis to support surgical decisions and is associated with tumor microenvironment in invasive breast cancer: A machine learning, multicenter study. Yu Y; He Z; Ouyang J; Tan Y; Chen Y; Gu Y; Mao L; Ren W; Wang J; Lin L; Wu Z; Liu J; Ou Q; Hu Q; Li A; Chen K; Li C; Lu N; Li X; Su F; Liu Q; Xie C; Yao H EBioMedicine; 2021 Jul; 69():103460. PubMed ID: 34233259 [TBL] [Abstract][Full Text] [Related]
10. Multi-modality radiomics model predicts axillary lymph node metastasis of breast cancer using MRI and mammography. Wang Q; Lin Y; Ding C; Guan W; Zhang X; Jia J; Zhou W; Liu Z; Bai G Eur Radiol; 2024 Sep; 34(9):6121-6131. PubMed ID: 38337068 [TBL] [Abstract][Full Text] [Related]
11. A two-center study of a combined nomogram based on mammography and MRI to predict ALN metastasis in breast cancer. Hua Y; Peng Q; Han J; Fei J; Sun A Magn Reson Imaging; 2024 Jul; 110():128-137. PubMed ID: 38631535 [TBL] [Abstract][Full Text] [Related]
12. Preoperative Prediction of Axillary Lymph Node Metastasis in Breast Cancer Using CNN Based on Multiparametric MRI. Wang Z; Sun H; Li J; Chen J; Meng F; Li H; Han L; Zhou S; Yu T J Magn Reson Imaging; 2022 Sep; 56(3):700-709. PubMed ID: 35108415 [TBL] [Abstract][Full Text] [Related]
13. Magnetic resonance imaging features for predicting axillary lymph node metastasis in patients with breast cancer. Zhao M; Wu Q; Guo L; Zhou L; Fu K Eur J Radiol; 2020 Aug; 129():109093. PubMed ID: 32512504 [TBL] [Abstract][Full Text] [Related]
14. Assessment of Lymphovascular Invasion in Breast Cancer Using a Combined MRI Morphological Features, Radiomics, and Deep Learning Approach Based on Dynamic Contrast-Enhanced MRI. Yang X; Fan X; Lin S; Zhou Y; Liu H; Wang X; Zuo Z; Zeng Y J Magn Reson Imaging; 2024 Jun; 59(6):2238-2249. PubMed ID: 37855421 [TBL] [Abstract][Full Text] [Related]
15. Fully Automated Identification of Lymph Node Metastases and Lymphovascular Invasion in Endometrial Cancer From Multi-Parametric MRI by Deep Learning. Wang Y; Liu W; Lu Y; Ling R; Wang W; Li S; Zhang F; Ning Y; Chen X; Yang G; Zhang H J Magn Reson Imaging; 2024 Dec; 60(6):2730-2742. PubMed ID: 38471960 [TBL] [Abstract][Full Text] [Related]
16. Non-invasive prediction model of axillary lymph node status in patients with early-stage breast cancer: a feasibility study based on dynamic contrast-enhanced-MRI radiomics. Chen W; Lin G; Kong C; Wu X; Hu Y; Chen M; Xia S; Lu C; Xu M; Ji J Br J Radiol; 2024 Feb; 97(1154):439-450. PubMed ID: 38308028 [TBL] [Abstract][Full Text] [Related]
17. Investigation of synthetic MRI with quantitative parameters for discriminating axillary lymph nodes status in invasive breast cancer. Qu M; Feng W; Liu X; Li Z; Li Y; Lu X; Lei J Eur J Radiol; 2024 Jun; 175():111452. PubMed ID: 38604092 [TBL] [Abstract][Full Text] [Related]
18. Artificial intelligence assisted ultrasound for the non-invasive prediction of axillary lymph node metastasis in breast cancer. Wang X; Nie L; Zhu Q; Zuo Z; Liu G; Sun Q; Zhai J; Li J BMC Cancer; 2024 Jul; 24(1):910. PubMed ID: 39075447 [TBL] [Abstract][Full Text] [Related]
19. Deep Learning Prediction of Axillary Lymph Node Metastasis in Breast Cancer Patients Using Clinical Implication-Applied Preprocessed CT Images. Park TY; Kwon LM; Hyeon J; Cho BJ; Kim BJ Curr Oncol; 2024 Apr; 31(4):2278-2288. PubMed ID: 38668072 [No Abstract] [Full Text] [Related]
20. Development and Validation of a Preoperative Magnetic Resonance Imaging Radiomics-Based Signature to Predict Axillary Lymph Node Metastasis and Disease-Free Survival in Patients With Early-Stage Breast Cancer. Yu Y; Tan Y; Xie C; Hu Q; Ouyang J; Chen Y; Gu Y; Li A; Lu N; He Z; Yang Y; Chen K; Ma J; Li C; Ma M; Li X; Zhang R; Zhong H; Ou Q; Zhang Y; He Y; Li G; Wu Z; Su F; Song E; Yao H JAMA Netw Open; 2020 Dec; 3(12):e2028086. PubMed ID: 33289845 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]