These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 38205937)

  • 41. Profiles of 67Cu in blood, bile, urine and faeces from 67Cu-primed lambs: effect of 99Mo-labelled tetrathiomolybdate on the metabolism of recently stored tissue 67Cu.
    Gooneratne SR; Laarveld B; Chaplin RK; Christensen DA
    Br J Nutr; 1989 Mar; 61(2):355-71. PubMed ID: 2706232
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Is There a Connection between the Metabolism of Copper, Sulfur, and Molybdenum in Alzheimer's Disease? New Insights on Disease Etiology.
    Coelho FC; Cerchiaro G; Araújo SES; Daher JPL; Cardoso SA; Coelho GF; Guimarães AG
    Int J Mol Sci; 2022 Jul; 23(14):. PubMed ID: 35887282
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Copper chelation and exogenous copper affect circadian clock phase resetting in the suprachiasmatic nucleus in vitro.
    Yamada Y; Prosser RA
    Neuroscience; 2014 Jan; 256():252-61. PubMed ID: 24161278
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Tetrathiomolybdate causes formation of hepatic copper-molybdenum clusters in an animal model of Wilson's disease.
    George GN; Pickering IJ; Harris HH; Gailer J; Klein D; Lichtmannegger J; Summer KH
    J Am Chem Soc; 2003 Feb; 125(7):1704-5. PubMed ID: 12580588
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A novel binuclear [CuSMo] cluster at the active site of carbon monoxide dehydrogenase: characterization by X-ray absorption spectroscopy.
    Gnida M; Ferner R; Gremer L; Meyer O; Meyer-Klaucke W
    Biochemistry; 2003 Jan; 42(1):222-30. PubMed ID: 12515558
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The influence of molybdenum on the copper metabolism of the rat at different Cu levels of the diet.
    Nederbragt H
    Br J Nutr; 1980 Mar; 43(2):329-38. PubMed ID: 7378340
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Differential adsorption of molybdate and tetrathiomolybdate on pyrite (FeS2).
    Bostick BC; Fendorf S; Helz GR
    Environ Sci Technol; 2003 Jan; 37(2):285-91. PubMed ID: 12564899
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Copper metabolism in rats given di- or trithiomolybdates.
    Bremner I; Mills CF; Young BW
    J Inorg Biochem; 1982 Apr; 16(2):109-19. PubMed ID: 7077322
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Removal and efflux of copper from Cu-metallothionein as Cu/tetrathiomolybdate complex in LEC rats.
    Ogra Y; Suzuki KT
    Res Commun Mol Pathol Pharmacol; 1995 May; 88(2):196-204. PubMed ID: 7670851
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Comparative mechanism and toxicity of tetra- and dithiomolybdates in the removal of copper.
    Ogra Y; Komada Y; Suzuki KT
    J Inorg Biochem; 1999 Jun; 75(3):199-204. PubMed ID: 10474204
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effects of copper deficiency and copper deficiency coupled with high dietary iron or molybdenum on phagocytic cell function and response of calves to a respiratory disease challenge.
    Gengelbach GP; Ward JD; Spears JW; Brown TT
    J Anim Sci; 1997 Apr; 75(4):1112-8. PubMed ID: 9110227
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Adsorption of molybdate and tetrathiomolybdate onto pyrite and goethite: effect of pH and competitive anions.
    Xu N; Christodoulatos C; Braida W
    Chemosphere; 2006 Mar; 62(10):1726-35. PubMed ID: 16084558
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Removal of copper from the liver of Long-Evans Cinnamon (LEC) rats by tetrathiomolybdate (TTM) injection: the main excretion route is via blood, not bile.
    Sugawara N; Li D; Sugawara C
    Res Commun Mol Pathol Pharmacol; 1994 Aug; 85(2):217-26. PubMed ID: 7994566
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Discriminating Susceptibility of Xanthine Oxidoreductase Family to Metals.
    Steunou AS; Babot M; Durand A; Bourbon ML; Liotenberg S; Miotello G; Armengaud J; Ouchane S
    Microbiol Spectr; 2023 Aug; 11(4):e0481422. PubMed ID: 37458582
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Mechanisms for removal of copper from metallothionein by tetrathiomolybdate.
    Suzuki KT; Yamamoto K; Ogra Y; Kanno S; Aoki Y
    J Inorg Biochem; 1994 May; 54(3):157-65. PubMed ID: 8027739
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Dietary starch concentration alters reticular pH, hepatic copper concentration, and performance in lactating Holstein-Friesian dairy cows receiving added dietary sulfur and molybdenum.
    McCaughern JH; Mackenzie AM; Sinclair LA
    J Dairy Sci; 2020 Oct; 103(10):9024-9036. PubMed ID: 32773307
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Copper chelation by tetrathiomolybdate inhibits lipopolysaccharide-induced inflammatory responses in vivo.
    Wei H; Frei B; Beckman JS; Zhang WJ
    Am J Physiol Heart Circ Physiol; 2011 Sep; 301(3):H712-20. PubMed ID: 21724870
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Tetrathiomolybdate in the treatment of acute hepatitis in an animal model for Wilson disease.
    Klein D; Arora U; Lichtmannegger J; Finckh M; Heinzmann U; Summer KH
    J Hepatol; 2004 Mar; 40(3):409-16. PubMed ID: 15123354
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Antagonists Mo and Cu in a heterometallic cluster present on a novel protein (orange protein) isolated from Desulfovibrio gigas.
    Bursakov SA; Gavel OY; Di Rocco G; Lampreia J; Calvete J; Pereira AS; Moura JJ; Moura I
    J Inorg Biochem; 2004 May; 98(5):833-40. PubMed ID: 15134929
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Effect of different levels of dietary molybdenum on copper and Mo metabolism in sheep fed on high levels of Cu.
    Van Ryssen JB; Stielau WJ
    Br J Nutr; 1981 Jan; 45(1):203-10. PubMed ID: 7470435
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.