BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 38206029)

  • 1. Adaptive laboratory evolution reveals regulators involved in repressing biofilm development as key players in
    Pomerleau M; Charron-Lamoureux V; Léonard L; Grenier F; Rodrigue S; Beauregard PB
    mSystems; 2024 Feb; 9(2):e0084323. PubMed ID: 38206029
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bacillus subtilis Early Colonization of Arabidopsis thaliana Roots Involves Multiple Chemotaxis Receptors.
    Allard-Massicotte R; Tessier L; Lécuyer F; Lakshmanan V; Lucier JF; Garneau D; Caudwell L; Vlamakis H; Bais HP; Beauregard PB
    mBio; 2016 Nov; 7(6):. PubMed ID: 27899502
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diversification of Bacillus subtilis during experimental evolution on Arabidopsis thaliana and the complementarity in root colonization of evolved subpopulations.
    Blake C; Nordgaard M; Maróti G; Kovács ÁT
    Environ Microbiol; 2021 Oct; 23(10):6122-6136. PubMed ID: 34296794
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental-Evolution-Driven Identification of
    Li E; Zhang H; Jiang H; Pieterse CMJ; Jousset A; Bakker PAHM; de Jonge R
    mBio; 2021 Jun; 12(3):e0092721. PubMed ID: 34101491
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Screening, plant growth promotion and root colonization pattern of two rhizobacteria (Pseudomonas fluorescens Ps006 and Bacillus amyloliquefaciens Bs006) on banana cv. Williams (Musa acuminata Colla).
    Gamez R; Cardinale M; Montes M; Ramirez S; Schnell S; Rodriguez F
    Microbiol Res; 2019 Mar; 220():12-20. PubMed ID: 30744815
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental evolution of
    Nordgaard M; Blake C; Maróti G; Hu G; Wang Y; Strube ML; Kovács ÁT
    iScience; 2022 Jun; 25(6):104406. PubMed ID: 35663012
    [No Abstract]   [Full Text] [Related]  

  • 7. Cyclic di-AMP Acts as an Extracellular Signal That Impacts
    Townsley L; Yannarell SM; Huynh TN; Woodward JJ; Shank EA
    mBio; 2018 Mar; 9(2):. PubMed ID: 29588402
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A degradation product of the salicylic acid pathway triggers oxidative stress resulting in down-regulation of Bacillus subtilis biofilm formation on Arabidopsis thaliana roots.
    Rudrappa T; Quinn WJ; Stanley-Wall NR; Bais HP
    Planta; 2007 Jul; 226(2):283-97. PubMed ID: 17554552
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Factors other than root secreted malic acid that contributes toward Bacillus subtilis FB17 colonization on Arabidopsis roots.
    Lakshmanan V; Bais HP
    Plant Signal Behav; 2013 Nov; 8(11):e27277. PubMed ID: 24310121
    [TBL] [Abstract][Full Text] [Related]  

  • 10.
    Xu Z; Zhang H; Sun X; Liu Y; Yan W; Xun W; Shen Q; Zhang R
    Appl Environ Microbiol; 2019 Mar; 85(5):. PubMed ID: 30552189
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production.
    Bais HP; Fall R; Vivanco JM
    Plant Physiol; 2004 Jan; 134(1):307-19. PubMed ID: 14684838
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SinR is a mutational target for fine-tuning biofilm formation in laboratory-evolved strains of Bacillus subtilis.
    Leiman SA; Arboleda LC; Spina JS; McLoon AL
    BMC Microbiol; 2014 Nov; 14():301. PubMed ID: 25433524
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microbe-associated molecular patterns-triggered root responses mediate beneficial rhizobacterial recruitment in Arabidopsis.
    Lakshmanan V; Kitto SL; Caplan JL; Hsueh YH; Kearns DB; Wu YS; Bais HP
    Plant Physiol; 2012 Nov; 160(3):1642-61. PubMed ID: 22972705
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced molecular visualization of root colonization and growth promotion by Bacillus subtilis EA-CB0575 in different growth systems.
    Posada LF; Álvarez JC; Romero-Tabarez M; de-Bashan L; Villegas-Escobar V
    Microbiol Res; 2018 Dec; 217():69-80. PubMed ID: 30384910
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deletion of Rap-Phr systems in Bacillus subtilis influences in vitro biofilm formation and plant root colonization.
    Nordgaard M; Mortensen RMR; Kirk NK; Gallegos-Monterrosa R; Kovács ÁT
    Microbiologyopen; 2021 Jun; 10(3):e1212. PubMed ID: 34180604
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Root transcriptome analysis of Arabidopsis thaliana exposed to beneficial Bacillus subtilis FB17 rhizobacteria revealed genes for bacterial recruitment and plant defense independent of malate efflux.
    Lakshmanan V; Castaneda R; Rudrappa T; Bais HP
    Planta; 2013 Oct; 238(4):657-68. PubMed ID: 23794026
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Parallel genetic adaptation of
    Hu G; Wang Y; Blake C; Nordgaard M; Liu X; Wang B; Kovács ÁT
    Microb Genom; 2023 Jul; 9(7):. PubMed ID: 37466402
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluorescent Pseudomonas -FAP2 and Bacillus licheniformis interact positively in biofilm mode enhancing plant growth and photosynthetic attributes.
    Ansari FA; Ahmad I
    Sci Rep; 2019 Mar; 9(1):4547. PubMed ID: 30872708
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bacillus subtilis biofilm induction by plant polysaccharides.
    Beauregard PB; Chai Y; Vlamakis H; Losick R; Kolter R
    Proc Natl Acad Sci U S A; 2013 Apr; 110(17):E1621-30. PubMed ID: 23569226
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Banana (Musa acuminata) transcriptome profiling in response to rhizobacteria: Bacillus amyloliquefaciens Bs006 and Pseudomonas fluorescens Ps006.
    Gamez RM; Rodríguez F; Vidal NM; Ramirez S; Vera Alvarez R; Landsman D; Mariño-Ramírez L
    BMC Genomics; 2019 May; 20(1):378. PubMed ID: 31088352
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.