These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 38206275)

  • 1. Characterising the metabolic rewiring of extremely slow growing Komagataella phaffii.
    Coltman BL; Rebnegger C; Gasser B; Zanghellini J
    Microb Biotechnol; 2024 Jan; 17(1):e14386. PubMed ID: 38206275
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein production dynamics and physiological adaptation of recombinant Komagataella phaffii at near-zero growth rates.
    Rebnegger C; Coltman BL; Kowarz V; Peña DA; Mentler A; Troyer C; Hann S; Schöny H; Koellensperger G; Mattanovich D; Gasser B
    Microb Cell Fact; 2024 Feb; 23(1):43. PubMed ID: 38331812
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pichia pastoris Exhibits High Viability and a Low Maintenance Energy Requirement at Near-Zero Specific Growth Rates.
    Rebnegger C; Vos T; Graf AB; Valli M; Pronk JT; Daran-Lapujade P; Mattanovich D
    Appl Environ Microbiol; 2016 Aug; 82(15):4570-4583. PubMed ID: 27208115
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Maintenance-energy requirements and robustness of Saccharomyces cerevisiae at aerobic near-zero specific growth rates.
    Vos T; Hakkaart XD; de Hulster EA; van Maris AJ; Pronk JT; Daran-Lapujade P
    Microb Cell Fact; 2016 Jun; 15(1):111. PubMed ID: 27317316
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contribution of Complex I NADH Dehydrogenase to Respiratory Energy Coupling in Glucose-Grown Cultures of
    Juergens H; Hakkaart XDV; Bras JE; Vente A; Wu L; Benjamin KR; Pronk JT; Daran-Lapujade P; Mans R
    Appl Environ Microbiol; 2020 Jul; 86(15):. PubMed ID: 32471916
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic engineering of Komagataella phaffii for synergetic utilization of glucose and glycerol.
    Wang X; Zhao X; Luo H; Wang Y; Wang Y; Tu T; Qin X; Huang H; Bai Y; Yao B; Su X; Zhang J
    Yeast; 2022 Jun; 39(6-7):412-421. PubMed ID: 35650013
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative Physiology of Non-Energy-Limited Retentostat Cultures of Saccharomyces cerevisiae at Near-Zero Specific Growth Rates.
    Liu Y; El Masoudi A; Pronk JT; van Gulik WM
    Appl Environ Microbiol; 2019 Oct; 85(20):. PubMed ID: 31375494
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two homologs of the Cat8 transcription factor are involved in the regulation of ethanol utilization in Komagataella phaffii.
    Barbay D; Mačáková M; Sützl L; De S; Mattanovich D; Gasser B
    Curr Genet; 2021 Aug; 67(4):641-661. PubMed ID: 33725138
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative physiology of Lactococcus lactis at extreme low-growth rates.
    Ercan O; Smid EJ; Kleerebezem M
    Environ Microbiol; 2013 Aug; 15(8):2319-32. PubMed ID: 23461598
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative physiology of Saccharomyces cerevisiae at near-zero specific growth rates.
    Boender LG; de Hulster EA; van Maris AJ; Daran-Lapujade PA; Pronk JT
    Appl Environ Microbiol; 2009 Sep; 75(17):5607-14. PubMed ID: 19592533
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fatty acid composition of the methylotrophic yeast Komagataella phaffii grown under low- and high-methanol conditions.
    Ma P; Takashima S; Fujita C; Yamada S; Oshima Y; Cai HL; Yurimoto H; Sakai Y; Hayakawa T; Shimada M; Ning X; Wei B; Nakagawa T
    Yeast; 2021 Oct; 38(10):541-548. PubMed ID: 34089530
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of Dissimilative Pathway of
    Berrios J; Theron CW; Steels S; Ponce B; Velastegui E; Bustos C; Altamirano C; Fickers P
    Microorganisms; 2022 Jul; 10(7):. PubMed ID: 35889185
    [No Abstract]   [Full Text] [Related]  

  • 13. High throughput
    Fina A; Millard P; Albiol J; Ferrer P; Heux S
    Microb Cell Fact; 2023 Jun; 22(1):117. PubMed ID: 37380999
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glucose-methanol co-utilization in Pichia pastoris studied by metabolomics and instationary ¹³C flux analysis.
    Jordà J; Suarez C; Carnicer M; ten Pierick A; Heijnen JJ; van Gulik W; Ferrer P; Albiol J; Wahl A
    BMC Syst Biol; 2013 Feb; 7():17. PubMed ID: 23448228
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic modeling to identify engineering targets for Komagataella phaffii: The effect of biomass composition on gene target identification.
    Cankorur-Cetinkaya A; Dikicioglu D; Oliver SG
    Biotechnol Bioeng; 2017 Nov; 114(11):2605-2615. PubMed ID: 28691262
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation of the central carbon metabolism of Sorangium cellulosum: metabolic network reconstruction and quantification of pathway fluxes.
    Bolten CJ; Heinzle E; Müller R; Wittmann C
    J Microbiol Biotechnol; 2009 Jan; 19(1):23-36. PubMed ID: 19190405
    [TBL] [Abstract][Full Text] [Related]  

  • 17. What makes Komagataella phaffii non-conventional?
    Ata Ö; Ergün BG; Fickers P; Heistinger L; Mattanovich D; Rebnegger C; Gasser B
    FEMS Yeast Res; 2021 Dec; 21(8):. PubMed ID: 34849756
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Histidine is essential for growth of Komagataella phaffii cultured in YPA medium.
    Gupta A; Rangarajan PN
    FEBS Open Bio; 2022 Jun; 12(6):1241-1252. PubMed ID: 35416413
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 13C metabolic flux analysis at a genome-scale.
    Gopalakrishnan S; Maranas CD
    Metab Eng; 2015 Nov; 32():12-22. PubMed ID: 26358840
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Decrease of energy spilling in Escherichia coli continuous cultures with rising specific growth rate and carbon wasting.
    Valgepea K; Adamberg K; Vilu R
    BMC Syst Biol; 2011 Jul; 5():106. PubMed ID: 21726468
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.