These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
176 related articles for article (PubMed ID: 38206379)
1. Prediction of the acceptance of telemedicine among rheumatic patients: a machine learning-powered secondary analysis of German survey data. Muehlensiepen F; Petit P; Knitza J; Welcker M; Vuillerme N Rheumatol Int; 2024 Mar; 44(3):523-534. PubMed ID: 38206379 [TBL] [Abstract][Full Text] [Related]
2. Factors Associated With Telemedicine Use Among Patients With Rheumatic and Musculoskeletal Disease: Secondary Analysis of Data From a German Nationwide Survey. Muehlensiepen F; Petit P; Knitza J; Welcker M; Vuillerme N J Med Internet Res; 2023 Jan; 25():e40912. PubMed ID: 36705950 [TBL] [Abstract][Full Text] [Related]
3. Identification of Motivational Determinants for Telemedicine Use Among Patients With Rheumatoid Arthritis in Germany: Secondary Analysis of Data From a Nationwide Cross-Sectional Survey Study. Muehlensiepen F; Petit P; Knitza J; Welcker M; Vuillerme N J Med Internet Res; 2024 Aug; 26():e47733. PubMed ID: 39159448 [TBL] [Abstract][Full Text] [Related]
4. Ability and willingness to utilize telemedicine among rheumatology patients-a cross-sectional survey. Kong SS; Otalora Rojas LA; Ashour A; Robinson M; Hosterman T; Bhanusali N Clin Rheumatol; 2021 Dec; 40(12):5087-5093. PubMed ID: 34219187 [TBL] [Abstract][Full Text] [Related]
5. Factors Associated With Telemedicine Use Among German General Practitioners and Rheumatologists: Secondary Analysis of Data From a Nationwide Survey. Muehlensiepen F; Petit P; Knitza J; Welcker M; Vuillerme N J Med Internet Res; 2022 Nov; 24(11):e40304. PubMed ID: 36449333 [TBL] [Abstract][Full Text] [Related]
6. Can Predictive Modeling Tools Identify Patients at High Risk of Prolonged Opioid Use After ACL Reconstruction? Anderson AB; Grazal CF; Balazs GC; Potter BK; Dickens JF; Forsberg JA Clin Orthop Relat Res; 2020 Jul; 478(7):0-1618. PubMed ID: 32282466 [TBL] [Abstract][Full Text] [Related]
8. Interactive telemedicine: effects on professional practice and health care outcomes. Flodgren G; Rachas A; Farmer AJ; Inzitari M; Shepperd S Cochrane Database Syst Rev; 2015 Sep; 2015(9):CD002098. PubMed ID: 26343551 [TBL] [Abstract][Full Text] [Related]
9. A Risk Prediction Model for Physical Restraints Among Older Chinese Adults in Long-term Care Facilities: Machine Learning Study. Wang J; Chen H; Wang H; Liu W; Peng D; Zhao Q; Xiao M J Med Internet Res; 2023 Apr; 25():e43815. PubMed ID: 37023416 [TBL] [Abstract][Full Text] [Related]
10. Prediction of sepsis mortality in ICU patients using machine learning methods. Gao J; Lu Y; Ashrafi N; Domingo I; Alaei K; Pishgar M BMC Med Inform Decis Mak; 2024 Aug; 24(1):228. PubMed ID: 39152423 [TBL] [Abstract][Full Text] [Related]
11. Predictive model and risk analysis for peripheral vascular disease in type 2 diabetes mellitus patients using machine learning and shapley additive explanation. Liu L; Bi B; Cao L; Gui M; Ju F Front Endocrinol (Lausanne); 2024; 15():1320335. PubMed ID: 38481447 [TBL] [Abstract][Full Text] [Related]
12. Deep convolutional neural network and IoT technology for healthcare. Wassan S; Dongyan H; Suhail B; Jhanjhi NZ; Xiao G; Ahmed S; Murugesan RK Digit Health; 2024; 10():20552076231220123. PubMed ID: 38250147 [TBL] [Abstract][Full Text] [Related]
14. Machine learning algorithms identify hypokalaemia risk in people with hypertension in the United States National Health and Nutrition Examination Survey 1999-2018. Lin Z; Cheng YT; Cheung BMY Ann Med; 2023 Dec; 55(1):2209336. PubMed ID: 37162442 [TBL] [Abstract][Full Text] [Related]
15. Evidence for telemedicine heterogeneity in rheumatic and musculoskeletal diseases care: a scoping review. El Aoufy K; Melis MR; Magi CE; Bellando-Randone S; Tamburini M; Bandini G; Moggi-Pignone A; Matucci-Cerinic M; Bambi S; Rasero L Clin Rheumatol; 2024 Sep; 43(9):2721-2763. PubMed ID: 38985235 [TBL] [Abstract][Full Text] [Related]
16. Machine Learning for Predicting Risk and Prognosis of Acute Kidney Disease in Critically Ill Elderly Patients During Hospitalization: Internet-Based and Interpretable Model Study. Li M; Han S; Liang F; Hu C; Zhang B; Hou Q; Zhao S J Med Internet Res; 2024 May; 26():e51354. PubMed ID: 38691403 [TBL] [Abstract][Full Text] [Related]
17. Application value of the automated machine learning model based on modified CT index combined with serological indices in the early prediction of lung cancer. Meng L; Zhu P; Xia K Front Public Health; 2024; 12():1368217. PubMed ID: 38645446 [TBL] [Abstract][Full Text] [Related]
18. Digital health: a new dimension in rheumatology patient care. Kataria S; Ravindran V Rheumatol Int; 2018 Nov; 38(11):1949-1957. PubMed ID: 29713795 [TBL] [Abstract][Full Text] [Related]
19. Development and External Validation of a Machine Learning-based Fall Prediction Model for Nursing Home Residents: A Prospective Cohort Study. Shao L; Wang Z; Xie X; Xiao L; Shi Y; Wang ZA; Zhang JE J Am Med Dir Assoc; 2024 Sep; 25(9):105169. PubMed ID: 39067863 [TBL] [Abstract][Full Text] [Related]
20. Development and Validation of an Explainable Machine Learning Model for Predicting Myocardial Injury After Noncardiac Surgery in Two Centers in China: Retrospective Study. Liu C; Zhang K; Yang X; Meng B; Lou J; Liu Y; Cao J; Liu K; Mi W; Li H JMIR Aging; 2024 Jul; 7():e54872. PubMed ID: 39087583 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]