These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 38206557)

  • 1. PPSNO: A Feature-Rich SNO Sites Predictor by Stacking Ensemble Strategy from Protein Sequence-Derived Information.
    Zhu L; Wang L; Yang Z; Xu P; Yang S
    Interdiscip Sci; 2024 Mar; 16(1):192-217. PubMed ID: 38206557
    [TBL] [Abstract][Full Text] [Related]  

  • 2. pLMSNOSite: an ensemble-based approach for predicting protein S-nitrosylation sites by integrating supervised word embedding and embedding from pre-trained protein language model.
    Pratyush P; Pokharel S; Saigo H; Kc DB
    BMC Bioinformatics; 2023 Feb; 24(1):41. PubMed ID: 36755242
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SNO-DCA: A model for predicting
    Jia J; Lv P; Wei X; Qiu W
    Heliyon; 2024 Jan; 10(1):e23187. PubMed ID: 38148797
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PSNO: predicting cysteine S-nitrosylation sites by incorporating various sequence-derived features into the general form of Chou's PseAAC.
    Zhang J; Zhao X; Sun P; Ma Z
    Int J Mol Sci; 2014 Jun; 15(7):11204-19. PubMed ID: 24968264
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of S-nitrosylation sites by integrating support vector machines and random forest.
    Hasan MM; Manavalan B; Khatun MS; Kurata H
    Mol Omics; 2019 Dec; 15(6):451-458. PubMed ID: 31710075
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An efficient support vector machine approach for identifying protein S-nitrosylation sites.
    Li YX; Shao YH; Jing L; Deng NY
    Protein Pept Lett; 2011 Jun; 18(6):573-87. PubMed ID: 21271979
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of S-nitrosylation sites based on multiple features combination.
    Li T; Song R; Yin Q; Gao M; Chen Y
    Sci Rep; 2019 Feb; 9(1):3098. PubMed ID: 30816267
    [TBL] [Abstract][Full Text] [Related]  

  • 8. iSNO-PseAAC: predict cysteine S-nitrosylation sites in proteins by incorporating position specific amino acid propensity into pseudo amino acid composition.
    Xu Y; Ding J; Wu LY; Chou KC
    PLoS One; 2013; 8(2):e55844. PubMed ID: 23409062
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DeepNitro: Prediction of Protein Nitration and Nitrosylation Sites by Deep Learning.
    Xie Y; Luo X; Li Y; Chen L; Ma W; Huang J; Cui J; Zhao Y; Xue Y; Zuo Z; Ren J
    Genomics Proteomics Bioinformatics; 2018 Aug; 16(4):294-306. PubMed ID: 30268931
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DeepSSPred: A Deep Learning Based Sulfenylation Site Predictor Via a Novel nSegmented Optimize Federated Feature Encoder.
    Khan ZU; Pi D
    Protein Pept Lett; 2021; 28(6):708-721. PubMed ID: 33267753
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mul-SNO: A Novel Prediction Tool for S-Nitrosylation Sites Based on Deep Learning Methods.
    Zhao Q; Ma J; Wang Y; Xie F; Lv Z; Xu Y; Shi H; Han K
    IEEE J Biomed Health Inform; 2022 May; 26(5):2379-2387. PubMed ID: 34762593
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting S-nitrosylation proteins and sites by fusing multiple features.
    Qiu WR; Wang QK; Guan MY; Jia JH; Xiao X
    Math Biosci Eng; 2021 Oct; 18(6):9132-9147. PubMed ID: 34814339
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ECAmyloid: An amyloid predictor based on ensemble learning and comprehensive sequence-derived features.
    Yang R; Liu J; Zhang L
    Comput Biol Chem; 2023 Jun; 104():107853. PubMed ID: 36990028
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis and review of techniques and tools based on machine learning and deep learning for prediction of lysine malonylation sites in protein sequences.
    Ramazi S; Tabatabaei SAH; Khalili E; Nia AG; Motarjem K
    Database (Oxford); 2024 Jan; 2024():. PubMed ID: 38245002
    [TBL] [Abstract][Full Text] [Related]  

  • 15. iSNO-AAPair: incorporating amino acid pairwise coupling into PseAAC for predicting cysteine S-nitrosylation sites in proteins.
    Xu Y; Shao XJ; Wu LY; Deng NY; Chou KC
    PeerJ; 2013; 1():e171. PubMed ID: 24109555
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent Advances in Predicting Protein S-Nitrosylation Sites.
    Zhao Q; Ma J; Xie F; Wang Y; Zhang Y; Li H; Sun Y; Wang L; Guo M; Han K
    Biomed Res Int; 2021; 2021():5542224. PubMed ID: 33628788
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DeepPPSite: A deep learning-based model for analysis and prediction of phosphorylation sites using efficient sequence information.
    Ahmed S; Kabir M; Arif M; Khan ZU; Yu DJ
    Anal Biochem; 2021 Jan; 612():113955. PubMed ID: 32949607
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PeNGaRoo, a combined gradient boosting and ensemble learning framework for predicting non-classical secreted proteins.
    Zhang Y; Yu S; Xie R; Li J; Leier A; Marquez-Lago TT; Akutsu T; Smith AI; Ge Z; Wang J; Lithgow T; Song J
    Bioinformatics; 2020 Feb; 36(3):704-712. PubMed ID: 31393553
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep learning and machine learning predictive models for neurological function after interventional embolization of intracranial aneurysms.
    Peng Y; Wang Y; Wen Z; Xiang H; Guo L; Su L; He Y; Pang H; Zhou P; Zhan X
    Front Neurol; 2024; 15():1321923. PubMed ID: 38327618
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of protein S-nitrosylation sites based on adapted normal distribution bi-profile Bayes and Chou's pseudo amino acid composition.
    Jia C; Lin X; Wang Z
    Int J Mol Sci; 2014 Jun; 15(6):10410-23. PubMed ID: 24918295
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.