BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 38206571)

  • 1. Accelerating Biodegradation: Enhancing Poly(lactic acid) Breakdown at Mesophilic Environmental Conditions with Biostimulants.
    Mayekar PC; Auras R
    Macromol Rapid Commun; 2024 Apr; 45(7):e2300641. PubMed ID: 38206571
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Speeding it up: dual effects of biostimulants and iron on the biodegradation of poly(lactic acid) at mesophilic conditions.
    Mayekar PC; Auras R
    Environ Sci Process Impacts; 2024 Mar; 26(3):530-539. PubMed ID: 38345085
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Appraising co-composting efficiency of biodegradable plastic bags and food wastes: Assessment microplastics morphology, greenhouse gas emissions, and changes in microbial community.
    Lu J; Qiu Y; Muhmood A; Zhang L; Wang P; Ren L
    Sci Total Environ; 2023 Jun; 875():162356. PubMed ID: 36822427
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural evaluation of Poly(lactic acid) degradation at standardized composting temperature of 58 degrees.
    Oh J; Park SB; Cha C; Hwang DK; Park SA; Park J; Oh DX; Jeon H; Koo JM
    Chemosphere; 2024 Apr; 354():141729. PubMed ID: 38492680
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biodegradation behavior of acetylated lignin added polylactic acid under thermophilic composting conditions.
    Park S; Kim J; Choi JH; Kim JC; Kim J; Cho Y; Jung S; Kwak HW; Choi IG
    Int J Biol Macromol; 2023 Dec; 253(Pt 7):127472. PubMed ID: 37858649
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biodegradation Assessment of Poly (Lactic Acid) Filled with Functionalized Titania Nanoparticles (PLA/TiO
    Luo Y; Lin Z; Guo G
    Nanoscale Res Lett; 2019 Feb; 14(1):56. PubMed ID: 30767099
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetics and mechanism of the biodegradation of PLA/clay nanocomposites during thermophilic phase of composting process.
    Stloukal P; Pekařová S; Kalendova A; Mattausch H; Laske S; Holzer C; Chitu L; Bodner S; Maier G; Slouf M; Koutny M
    Waste Manag; 2015 Aug; 42():31-40. PubMed ID: 25981155
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PLA/PHB-Based Materials Fully Biodegradable under Both Industrial and Home-Composting Conditions.
    Fogašová M; Figalla S; Danišová L; Medlenová E; Hlaváčiková S; Vanovčanová Z; Omaníková L; Baco A; Horváth V; Mikolajová M; Feranc J; Bočkaj J; Plavec R; Alexy P; Repiská M; Přikryl R; Kontárová S; Báreková A; Sláviková M; Koutný M; Fayyazbakhsh A; Kadlečková M
    Polymers (Basel); 2022 Sep; 14(19):. PubMed ID: 36236060
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microbial degradation of four biodegradable polymers in soil and compost demonstrating polycaprolactone as an ideal compostable plastic.
    Al Hosni AS; Pittman JK; Robson GD
    Waste Manag; 2019 Sep; 97():105-114. PubMed ID: 31447017
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of turning aeration and the initial carbon/nitrogen ratio on the biodegradation of polylactic acid under controlled conditions.
    Baldera-Moreno Y; Hernández C; Vargas A; Rojas-Palma A; Morales-Vera R; Andler R
    Int J Biol Macromol; 2024 May; 268(Pt 1):131689. PubMed ID: 38642680
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biodegradable kinetics and behavior of bio-based polyblends under simulated aerobic composting conditions.
    Kalita NK; Bhasney SM; Kalamdhad A; Katiyar V
    J Environ Manage; 2020 May; 261():110211. PubMed ID: 32148281
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biodegradation of Poly(Lactic Acid) Biocomposites under Controlled Composting Conditions and Freshwater Biotope.
    Brdlík P; Borůvka M; Běhálek L; Lenfeld P
    Polymers (Basel); 2021 Feb; 13(4):. PubMed ID: 33669420
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anaerobic biodegradation under slurry thermophilic conditions of poly(lactic acid)/starch blend compatibilized by maleic anhydride.
    Camacho-Muñoz R; Villada-Castillo HS; Solanilla-Duque JF
    Int J Biol Macromol; 2020 Nov; 163():1859-1865. PubMed ID: 32979442
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of Nanoclays on the Biodegradation of Poly(Lactic Acid) Nanocomposites.
    Castro-Aguirre E; Auras R; Selke S; Rubino M; Marsh T
    Polymers (Basel); 2018 Feb; 10(2):. PubMed ID: 30966238
    [TBL] [Abstract][Full Text] [Related]  

  • 15. End-of-life evaluation and biodegradation of Poly(lactic acid) (PLA)/Polycaprolactone (PCL)/Microcrystalline cellulose (MCC) polyblends under composting conditions.
    Kalita NK; Bhasney SM; Mudenur C; Kalamdhad A; Katiyar V
    Chemosphere; 2020 May; 247():125875. PubMed ID: 32069712
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Comparative Study on the Aerobic Biodegradation of the Biopolymer Blends of Poly(butylene succinate), Poly(butylene adipate terephthalate) and Poly(lactic acid).
    Nomadolo N; Dada OE; Swanepoel A; Mokhena T; Muniyasamy S
    Polymers (Basel); 2022 May; 14(9):. PubMed ID: 35567063
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioaugmentation with a defined bacterial consortium: A key to degrade high molecular weight polylactic acid during traditional composting.
    Mistry AN; Kachenchart B; Pinyakong O; Assavalapsakul W; Jitpraphai SM; Somwangthanaroj A; Luepromchai E
    Bioresour Technol; 2023 Jan; 367():128237. PubMed ID: 36332866
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microbial biofilm composition and polymer degradation of compostable and non-compostable plastics immersed in the marine environment.
    Delacuvellerie A; Benali S; Cyriaque V; Moins S; Raquez JM; Gobert S; Wattiez R
    J Hazard Mater; 2021 Oct; 419():126526. PubMed ID: 34328083
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparing the bacterial composition, succession and assembly patterns in plastisphere and kitchen waste composting with PLA/PBAT blends.
    Chen W; Feng Z; Chang Y; Xu S; Zhou K; Shi X; Wang Z; Zhang L; Wei Y; Li J
    J Hazard Mater; 2023 Jul; 454():131405. PubMed ID: 37098293
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Landfill-mined soil-like fraction (LMSF) use in biopolymer composting: Material pre-treatment, bioaugmentation and agricultural prospects.
    Banerjee A; Dhal MK; Madhu K; Chah CN; Rattan B; Katiyar V; Sekharan S; Sarmah AK
    Environ Pollut; 2024 Aug; 355():124255. PubMed ID: 38815894
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.