These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 38206909)

  • 21. Genome evolution in diploid and tetraploid Coffea species as revealed by comparative analysis of orthologous genome segments.
    Cenci A; Combes MC; Lashermes P
    Plant Mol Biol; 2012 Jan; 78(1-2):135-45. PubMed ID: 22086332
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Madagascar sheds new light on the molecular systematics and biogeography of grammitid ferns: New unexpected lineages and numerous long-distance dispersal events.
    Bauret L; Gaudeul M; Sundue MA; Parris BS; Ranker TA; Rakotondrainibe F; Hennequin S; Ranaivo J; Selosse MA; Rouhan G
    Mol Phylogenet Evol; 2017 Jun; 111():1-17. PubMed ID: 28279810
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Partial sequencing reveals the transposable element composition of Coffea genomes and provides evidence for distinct evolutionary stories.
    Guyot R; Darré T; Dupeyron M; de Kochko A; Hamon S; Couturon E; Crouzillat D; Rigoreau M; Rakotomalala JJ; Raharimalala NE; Akaffou SD; Hamon P
    Mol Genet Genomics; 2016 Oct; 291(5):1979-90. PubMed ID: 27469896
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Plant population dynamics on oceanic islands during the Late Quaternary climate changes: genetic evidence from a tree species (Coffea mauritiana) in Reunion Island.
    Garot E; Joët T; Combes MC; Severac D; Lashermes P
    New Phytol; 2019 Oct; 224(2):974-986. PubMed ID: 31291469
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A survey of mangiferin and hydroxycinnamic acid ester accumulation in coffee (Coffea) leaves: biological implications and uses.
    Campa C; Mondolot L; Rakotondravao A; Bidel LP; Gargadennec A; Couturon E; La Fisca P; Rakotomalala JJ; Jay-Allemand C; Davis AP
    Ann Bot; 2012 Aug; 110(3):595-613. PubMed ID: 22700941
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The chloroplast protein HCF164 is predicted to be associated with Coffea S
    Guerra-Guimarães L; Pinheiro C; Oliveira ASF; Mira-Jover A; Valverde J; Guedes FAF; Azevedo H; Várzea V; Muñoz Pajares AJ
    Sci Rep; 2023 Sep; 13(1):16019. PubMed ID: 37749157
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Population structure and genetic relationships between Ethiopian and Brazilian Coffea arabica genotypes revealed by SSR markers.
    da Silva BSR; Sant'Ana GC; Chaves CL; Godoy Androcioli L; Ferreira RV; Sera GH; Charmetant P; Leroy T; Pot D; Domingues DS; Pereira LFP
    Genetica; 2019 Apr; 147(2):205-216. PubMed ID: 31054007
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Development of new genomic microsatellite markers from robusta coffee (Coffea canephora Pierre ex A. Froehner) showing broad cross-species transferability and utility in genetic studies.
    Hendre PS; Phanindranath R; Annapurna V; Lalremruata A; Aggarwal RK
    BMC Plant Biol; 2008 Apr; 8():51. PubMed ID: 18447947
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Differential regulation of caffeine metabolism in Coffea arabica (Arabica) and Coffea canephora (Robusta).
    Perrois C; Strickler SR; Mathieu G; Lepelley M; Bedon L; Michaux S; Husson J; Mueller L; Privat I
    Planta; 2015 Jan; 241(1):179-91. PubMed ID: 25249475
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Phylogeny of the Madagascar-centred tribe Danaideae (Rubiaceae) as a precursor to taxonomic revision: insights into its generic and species limits, affinities and distribution.
    Razafimandimbison SG; Wikström N; Khodabandeh A; Rydin C
    Ann Bot; 2022 Dec; 130(6):849-867. PubMed ID: 36149802
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Differential regulation of grain sucrose accumulation and metabolism in Coffea arabica (Arabica) and Coffea canephora (Robusta) revealed through gene expression and enzyme activity analysis.
    Privat I; Foucrier S; Prins A; Epalle T; Eychenne M; Kandalaft L; Caillet V; Lin C; Tanksley S; Foyer C; Mccarthy J
    New Phytol; 2008; 178(4):781-797. PubMed ID: 18384509
    [TBL] [Abstract][Full Text] [Related]  

  • 32. RBCS1 expression in coffee: Coffea orthologs, Coffea arabica homeologs, and expression variability between genotypes and under drought stress.
    Marraccini P; Freire LP; Alves GS; Vieira NG; Vinecky F; Elbelt S; Ramos HJ; Montagnon C; Vieira LG; Leroy T; Pot D; Silva VA; Rodrigues GC; Andrade AC
    BMC Plant Biol; 2011 May; 11():85. PubMed ID: 21575242
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Accurate Differentiation of Green Beans of Arabica and Robusta Coffee Using Nanofluidic Array of Single Nucleotide Polymorphism (SNP) Markers.
    Zhang D; Vega FE; Infante F; Solano W; Johnson ES; Meinhardt LW
    J AOAC Int; 2020 Apr; 103(2):315-324. PubMed ID: 33241281
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Identification of Tenrec ecaudatus, a Wild Mammal Introduced to Mayotte Island, as a Reservoir of the Newly Identified Human Pathogenic Leptospira mayottensis.
    Lagadec E; Gomard Y; Le Minter G; Cordonin C; Cardinale E; Ramasindrazana B; Dietrich M; Goodman SM; Tortosa P; Dellagi K
    PLoS Negl Trop Dis; 2016 Aug; 10(8):e0004933. PubMed ID: 27574792
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Organization and molecular evolution of a disease-resistance gene cluster in coffee trees.
    Ribas AF; Cenci A; Combes MC; Etienne H; Lashermes P
    BMC Genomics; 2011 May; 12():240. PubMed ID: 21575174
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Lost and Found:
    Davis AP; Gargiulo R; Fay MF; Sarmu D; Haggar J
    Front Plant Sci; 2020; 11():616. PubMed ID: 32508866
    [No Abstract]   [Full Text] [Related]  

  • 37. Genomic Evaluation of
    Tapaça IDPE; Mavuque L; Corti R; Pedrazzani S; Maquia ISA; Tongai C; Partelli FL; Ramalho JC; Marques I; Ribeiro-Barros AI
    Plants (Basel); 2023 May; 12(10):. PubMed ID: 37653961
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A high-throughput data mining of single nucleotide polymorphisms in Coffea species expressed sequence tags suggests differential homeologous gene expression in the allotetraploid Coffea arabica.
    Vidal RO; Mondego JM; Pot D; Ambrósio AB; Andrade AC; Pereira LF; Colombo CA; Vieira LG; Carazzolle MF; Pereira GA
    Plant Physiol; 2010 Nov; 154(3):1053-66. PubMed ID: 20864545
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A single polyploidization event at the origin of the tetraploid genome of Coffea arabica is responsible for the extremely low genetic variation in wild and cultivated germplasm.
    Scalabrin S; Toniutti L; Di Gaspero G; Scaglione D; Magris G; Vidotto M; Pinosio S; Cattonaro F; Magni F; Jurman I; Cerutti M; Suggi Liverani F; Navarini L; Del Terra L; Pellegrino G; Ruosi MR; Vitulo N; Valle G; Pallavicini A; Graziosi G; Klein PE; Bentley N; Murray S; Solano W; Al Hakimi A; Schilling T; Montagnon C; Morgante M; Bertrand B
    Sci Rep; 2020 Mar; 10(1):4642. PubMed ID: 32170172
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The evolutionary origin of Indian Ocean tortoises (Dipsochelys).
    Palkovacs EP; Gerlach J; Caccone A
    Mol Phylogenet Evol; 2002 Aug; 24(2):216-27. PubMed ID: 12144758
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.