BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 38206950)

  • 1. Unraveling the plasticity of translation initiation in prokaryotes: Beyond the invariant Shine-Dalgarno sequence.
    Estrada K; Garciarrubio A; Merino E
    PLoS One; 2024; 19(1):e0289914. PubMed ID: 38206950
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Local absence of secondary structure permits translation of mRNAs that lack ribosome-binding sites.
    Scharff LB; Childs L; Walther D; Bock R
    PLoS Genet; 2011 Jun; 7(6):e1002155. PubMed ID: 21731509
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of base-pairing potentials between 16S rRNA and 5' UTR for translation initiation in various prokaryotes.
    Osada Y; Saito R; Tomita M
    Bioinformatics; 1999; 15(7-8):578-81. PubMed ID: 10487865
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prokaryotic coding regions have little if any specific depletion of Shine-Dalgarno motifs.
    Yurovsky A; Amin MR; Gardin J; Chen Y; Skiena S; Futcher B
    PLoS One; 2018; 13(8):e0202768. PubMed ID: 30138485
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The diversity of Shine-Dalgarno sequences sheds light on the evolution of translation initiation.
    Wen JD; Kuo ST; Chou HD
    RNA Biol; 2021 Nov; 18(11):1489-1500. PubMed ID: 33349119
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In silico analysis of 5'-UTRs highlights the prevalence of Shine-Dalgarno and leaderless-dependent mechanisms of translation initiation in bacteria and archaea, respectively.
    Srivastava A; Gogoi P; Deka B; Goswami S; Kanaujia SP
    J Theor Biol; 2016 Aug; 402():54-61. PubMed ID: 27155047
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting Shine-Dalgarno sequence locations exposes genome annotation errors.
    Starmer J; Stomp A; Vouk M; Bitzer D
    PLoS Comput Biol; 2006 May; 2(5):e57. PubMed ID: 16710451
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative genomic analysis of translation initiation mechanisms for genes lacking the Shine-Dalgarno sequence in prokaryotes.
    Nakagawa S; Niimura Y; Gojobori T
    Nucleic Acids Res; 2017 Apr; 45(7):3922-3931. PubMed ID: 28334743
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Shine-Dalgarno sequence of bacteriophage T4: GAGG prevails in early genes.
    Malys N
    Mol Biol Rep; 2012 Jan; 39(1):33-9. PubMed ID: 21533668
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Distribution and diversity of ribosome binding sites in prokaryotic genomes.
    Omotajo D; Tate T; Cho H; Choudhary M
    BMC Genomics; 2015 Aug; 16(1):604. PubMed ID: 26268350
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Re-annotation of 12,495 prokaryotic 16S rRNA 3' ends and analysis of Shine-Dalgarno and anti-Shine-Dalgarno sequences.
    Amin MR; Yurovsky A; Chen Y; Skiena S; Futcher B
    PLoS One; 2018; 13(8):e0202767. PubMed ID: 30138483
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiple elements required for translation of plastid atpB mRNA lacking the Shine-Dalgarno sequence.
    Hirose T; Sugiura M
    Nucleic Acids Res; 2004; 32(11):3503-10. PubMed ID: 15229294
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Shine-Dalgarno Sequences Play an Essential Role in the Translation of Plastid mRNAs in Tobacco.
    Scharff LB; Ehrnthaler M; Janowski M; Childs LH; Hasse C; Gremmels J; Ruf S; Zoschke R; Bock R
    Plant Cell; 2017 Dec; 29(12):3085-3101. PubMed ID: 29133466
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of the optimal aligned spacing between the Shine-Dalgarno sequence and the translation initiation codon of Escherichia coli mRNAs.
    Chen H; Bjerknes M; Kumar R; Jay E
    Nucleic Acids Res; 1994 Nov; 22(23):4953-7. PubMed ID: 7528374
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RNA-Seq-Based Analysis Reveals Heterogeneity in Mature 16S rRNA 3' Termini and Extended Anti-Shine-Dalgarno Motifs in Bacterial Species.
    Silke JR; Wei Y; Xia X
    G3 (Bethesda); 2018 Dec; 8(12):3973-3979. PubMed ID: 30355764
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Portable Shine-Dalgarno regions; nucleotides between the Shine-Dalgarno sequence and the start codon affect the translation efficiency.
    de Boer HA; Comstock LJ; Hui A; Wong E; Vasser M
    Gene Amplif Anal; 1983; 3():103-16. PubMed ID: 6086029
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel Translation Initiation Regulation Mechanism in Escherichia coli ptrB Mediated by a 5'-Terminal AUG.
    Beck HJ; Janssen GR
    J Bacteriol; 2017 Jul; 199(14):. PubMed ID: 28484048
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Extensive complementarity of the Shine-Dalgarno region and 3'-terminal sequence of 16S ribosomal RNA is inefficient for translation in vivo].
    Komarova AV; Chufistova LS; Supina EV; Boni IV
    Bioorg Khim; 2001; 27(4):282-90. PubMed ID: 11558262
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic evolution of translation initiation mechanisms in prokaryotes.
    Nakagawa S; Niimura Y; Miura K; Gojobori T
    Proc Natl Acad Sci U S A; 2010 Apr; 107(14):6382-7. PubMed ID: 20308567
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional Shine-Dalgarno-like sequences for translational initiation of chloroplast mRNAs.
    Hirose T; Sugiura M
    Plant Cell Physiol; 2004 Jan; 45(1):114-7. PubMed ID: 14749493
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.