BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 38207009)

  • 1. Stomatal effects and ABA metabolism mediate differential regulation of leaf and flower cooling in tomato cultivars exposed to heat and drought stress.
    Bjerring Jensen N; Vrobel O; Akula Nageshbabu N; De Diego N; Tarkowski P; Ottosen CO; Zhou R
    J Exp Bot; 2024 Mar; 75(7):2156-2175. PubMed ID: 38207009
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Drought stress had a predominant effect over heat stress on three tomato cultivars subjected to combined stress.
    Zhou R; Yu X; Ottosen CO; Rosenqvist E; Zhao L; Wang Y; Yu W; Zhao T; Wu Z
    BMC Plant Biol; 2017 Jan; 17(1):24. PubMed ID: 28122507
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Elevated CO
    Jensen NB; Ottosen CO; Fomsgaard IS; Zhou R
    Plant Physiol Biochem; 2024 Jul; 212():108762. PubMed ID: 38788294
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential regulation of flower transpiration during abiotic stress in annual plants.
    Sinha R; Zandalinas SI; Fichman Y; Sen S; Zeng S; Gómez-Cadenas A; Joshi T; Fritschi FB; Mittler R
    New Phytol; 2022 Jul; 235(2):611-629. PubMed ID: 35441705
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SpUSP, an annexin-interacting universal stress protein, enhances drought tolerance in tomato.
    Loukehaich R; Wang T; Ouyang B; Ziaf K; Li H; Zhang J; Lu Y; Ye Z
    J Exp Bot; 2012 Sep; 63(15):5593-606. PubMed ID: 22915741
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tolerance of citrus plants to the combination of high temperatures and drought is associated to the increase in transpiration modulated by a reduction in abscisic acid levels.
    Zandalinas SI; Rivero RM; Martínez V; Gómez-Cadenas A; Arbona V
    BMC Plant Biol; 2016 Apr; 16():105. PubMed ID: 27121193
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extreme heat increases stomatal conductance and drought-induced mortality risk in vulnerable plant species.
    Marchin RM; Backes D; Ossola A; Leishman MR; Tjoelker MG; Ellsworth DS
    Glob Chang Biol; 2022 Feb; 28(3):1133-1146. PubMed ID: 34741566
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The balance of survival: Comparative drought response in wild and domesticated tomatoes.
    Lupo Y; Moshelion M
    Plant Sci; 2024 Feb; 339():111928. PubMed ID: 37992898
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ABA signaling rather than ABA metabolism is involved in trehalose-induced drought tolerance in tomato plants.
    Yu W; Zhao R; Wang L; Zhang S; Li R; Sheng J; Shen L
    Planta; 2019 Aug; 250(2):643-655. PubMed ID: 31144110
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physiological and molecular responses to drought in Petunia: the importance of stress severity.
    Kim J; Malladi A; van Iersel MW
    J Exp Bot; 2012 Nov; 63(18):6335-45. PubMed ID: 23077204
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Effects of sub-low temperature and drought stress on water transport and morphological anatomy of tomato plant].
    Xiao HJ; Li JQ; Wang JQ; DU QJ
    Ying Yong Sheng Tai Xue Bao; 2020 Aug; 31(8):2630-2636. PubMed ID: 34494785
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cytokinin activity increases stomatal density and transpiration rate in tomato.
    Farber M; Attia Z; Weiss D
    J Exp Bot; 2016 Dec; 67(22):6351-6362. PubMed ID: 27811005
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanism of Stomatal Closure in Plants Exposed to Drought and Cold Stress.
    Agurla S; Gahir S; Munemasa S; Murata Y; Raghavendra AS
    Adv Exp Med Biol; 2018; 1081():215-232. PubMed ID: 30288712
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Arbuscular mycorrhizal fungi mitigate negative effects of combined drought and heat stress on tomato plants.
    Duc NH; Csintalan Z; Posta K
    Plant Physiol Biochem; 2018 Nov; 132():297-307. PubMed ID: 30245343
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RD20, a stress-inducible caleosin, participates in stomatal control, transpiration and drought tolerance in Arabidopsis thaliana.
    Aubert Y; Vile D; Pervent M; Aldon D; Ranty B; Simonneau T; Vavasseur A; Galaud JP
    Plant Cell Physiol; 2010 Dec; 51(12):1975-87. PubMed ID: 20952421
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stomatal closure is induced by hydraulic signals and maintained by ABA in drought-stressed grapevine.
    Tombesi S; Nardini A; Frioni T; Soccolini M; Zadra C; Farinelli D; Poni S; Palliotti A
    Sci Rep; 2015 Jul; 5():12449. PubMed ID: 26207993
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bundle-sheath cell regulation of xylem-mesophyll water transport via aquaporins under drought stress: a target of xylem-borne ABA?
    Shatil-Cohen A; Attia Z; Moshelion M
    Plant J; 2011 Jul; 67(1):72-80. PubMed ID: 21401747
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adjustments of water use efficiency by stomatal regulation during drought and recovery in the drought-adapted Vitis hybrid Richter-110 (V. berlandieri x V. rupestris).
    Pou A; Flexas J; Alsina Mdel M; Bota J; Carambula C; de Herralde F; Galmés J; Lovisolo C; Jiménez M; Ribas-Carbó M; Rusjan D; Secchi F; Tomàs M; Zsófi Z; Medrano H
    Physiol Plant; 2008 Oct; 134(2):313-23. PubMed ID: 18507813
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional convergence of oxylipin and abscisic acid pathways controls stomatal closure in response to drought.
    Savchenko T; Kolla VA; Wang CQ; Nasafi Z; Hicks DR; Phadungchob B; Chehab WE; Brandizzi F; Froehlich J; Dehesh K
    Plant Physiol; 2014 Mar; 164(3):1151-60. PubMed ID: 24429214
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Most stomatal closure in woody species under moderate drought can be explained by stomatal responses to leaf turgor.
    Rodriguez-Dominguez CM; Buckley TN; Egea G; de Cires A; Hernandez-Santana V; Martorell S; Diaz-Espejo A
    Plant Cell Environ; 2016 Sep; 39(9):2014-26. PubMed ID: 27255698
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.