These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 38211314)
1. A generalized model for monitor units determination in ocular proton therapy using machine learning: A proof-of-concept study. Fleury E; Herault J; Spruijt K; Kouwenberg J; Angellier G; Hofverberg P; Horwacik T; Kajdrowicz T; Pignol JP; Hoogeman M; Trnková P Phys Med Biol; 2024 Feb; 69(4):. PubMed ID: 38211314 [No Abstract] [Full Text] [Related]
2. A machine learning approach to the accurate prediction of monitor units for a compact proton machine. Sun B; Lam D; Yang D; Grantham K; Zhang T; Mutic S; Zhao T Med Phys; 2018 May; 45(5):2243-2251. PubMed ID: 29500818 [TBL] [Abstract][Full Text] [Related]
3. A Universal Range Shifter and Range Compensator Can Enable Proton Pencil Beam Scanning Single-Energy Bragg Peak FLASH-RT Treatment Using Current Commercially Available Proton Systems. Kang M; Wei S; Choi JI; Lin H; Simone CB Int J Radiat Oncol Biol Phys; 2022 May; 113(1):203-213. PubMed ID: 35101597 [TBL] [Abstract][Full Text] [Related]
4. Automatic detection and classification of treatment deviations in proton therapy from realistically simulated prompt gamma imaging data. Pietsch J; Khamfongkhruea C; Berthold J; Janssens G; Stützer K; Löck S; Richter C Med Phys; 2023 Jan; 50(1):506-517. PubMed ID: 36102783 [TBL] [Abstract][Full Text] [Related]
5. Monte Carlo simulation-based patient-specific QA using machine log files for line-scanning proton radiation therapy. Jeon C; Lee J; Shin J; Cheon W; Ahn S; Jo K; Han Y Med Phys; 2023 Nov; 50(11):7139-7153. PubMed ID: 37756652 [TBL] [Abstract][Full Text] [Related]
6. Commissioning and validation of a novel commercial TPS for ocular proton therapy. Wulff J; Koska B; Heufelder J; Janson M; Bäcker CM; Siregar H; Behrends C; Bäumer C; Foerster A; Bechrakis NE; Timmermann B Med Phys; 2023 Jan; 50(1):365-379. PubMed ID: 36195575 [TBL] [Abstract][Full Text] [Related]
7. Design and characterization of an aperture system and spot configuration for ocular treatments with a gantry-based spot scanning proton beam. Hickling SV; Corner S; Kruse JJ; Deisher AJ Med Phys; 2023 Jul; 50(7):4521-4532. PubMed ID: 37084072 [TBL] [Abstract][Full Text] [Related]
8. Experimental validation of the TOPAS Monte Carlo system for passive scattering proton therapy. Testa M; Schümann J; Lu HM; Shin J; Faddegon B; Perl J; Paganetti H Med Phys; 2013 Dec; 40(12):121719. PubMed ID: 24320505 [TBL] [Abstract][Full Text] [Related]
9. Design and commissioning of the non-dedicated scanning proton beamline for ocular treatment at the synchrotron-based CNAO facility. Ciocca M; Magro G; Mastella E; Mairani A; Mirandola A; Molinelli S; Russo S; Vai A; Fiore MR; Mosci C; Valvo F; Via R; Baroni G; Orecchia R Med Phys; 2019 Apr; 46(4):1852-1862. PubMed ID: 30659616 [TBL] [Abstract][Full Text] [Related]
10. Monte Carlo calculations and measurements of absorbed dose per monitor unit for the treatment of uveal melanoma with proton therapy. Koch N; Newhauser WD; Titt U; Gombos D; Coombes K; Starkschall G Phys Med Biol; 2008 Mar; 53(6):1581-94. PubMed ID: 18367789 [TBL] [Abstract][Full Text] [Related]
11. Advanced pencil beam scanning Bragg peak FLASH-RT delivery technique can enhance lung cancer planning treatment outcomes compared to conventional multiple-energy proton PBS techniques. Wei S; Lin H; Isabelle Choi J; Shi C; Simone CB; Kang M Radiother Oncol; 2022 Oct; 175():238-247. PubMed ID: 35961583 [TBL] [Abstract][Full Text] [Related]
12. Dosimetric properties of a proton beamline dedicated to the treatment of ocular disease. Slopsema RL; Mamalui M; Zhao T; Yeung D; Malyapa R; Li Z Med Phys; 2014 Jan; 41(1):011707. PubMed ID: 24387499 [TBL] [Abstract][Full Text] [Related]
13. FLASH dose rate calculation based on log files in proton pencil beam scanning therapy. Jeon C; Ahn S; Amano D; Kamiguchi N; Cho S; Sheen H; Park HC; Han Y Med Phys; 2023 Nov; 50(11):7154-7166. PubMed ID: 37431587 [TBL] [Abstract][Full Text] [Related]
14. Use of single-energy proton pencil beam scanning Bragg peak for intensity-modulated proton therapy FLASH treatment planning in liver-hypofractionated radiation therapy. Wei S; Lin H; Shi C; Xiong W; Chen CC; Huang S; Press RH; Hasan S; Chhabra AM; Choi JI; Simone CB; Kang M Med Phys; 2022 Oct; 49(10):6560-6574. PubMed ID: 35929404 [TBL] [Abstract][Full Text] [Related]
15. Development and verification of an analytical algorithm to predict absorbed dose distributions in ocular proton therapy using Monte Carlo simulations. Koch NC; Newhauser WD Phys Med Biol; 2010 Feb; 55(3):833-53. PubMed ID: 20071765 [TBL] [Abstract][Full Text] [Related]
16. Characterization of the HollandPTC proton therapy beamline dedicated to uveal melanoma treatment and an interinstitutional comparison. Fleury E; Trnková P; Spruijt K; Herault J; Lebbink F; Heufelder J; Hrbacek J; Horwacik T; Kajdrowicz T; Denker A; Gerard A; Hofverberg P; Mamalui M; Slopsema R; Pignol JP; Hoogeman M Med Phys; 2021 Aug; 48(8):4506-4522. PubMed ID: 34091930 [TBL] [Abstract][Full Text] [Related]
17. Treatment of ocular tumors through a novel applicator on a conventional proton pencil beam scanning beamline. Regmi R; Maes D; Nevitt A; Toltz A; Leuro E; Chen J; Halasz L; Rengan R; Bloch C; Saini J Sci Rep; 2022 Mar; 12(1):4648. PubMed ID: 35301371 [TBL] [Abstract][Full Text] [Related]
18. Development of a log file analysis tool for proton patient QA, system performance tracking, and delivered dose reconstruction. Ates O; Pirlepesov F; Zhao L; Hua CH; Merchant TE J Appl Clin Med Phys; 2023 Jul; 24(7):e13972. PubMed ID: 36951089 [TBL] [Abstract][Full Text] [Related]
20. Feasibility study of fast intensity-modulated proton therapy dose prediction method using deep neural networks for prostate cancer. Wang W; Chang Y; Liu Y; Liang Z; Liao Y; Qin B; Liu X; Yang Z Med Phys; 2022 Aug; 49(8):5451-5463. PubMed ID: 35543109 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]