These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 38211706)

  • 1. The dynamics of statistical learning in visual search and its interaction with salience processing: An EEG study.
    Dolci C; Rashal E; Santandrea E; Ben Hamed S; Chelazzi L; Macaluso E; Boehler CN
    Neuroimage; 2024 Feb; 286():120514. PubMed ID: 38211706
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integrated effects of top-down attention and statistical learning during visual search: An EEG study.
    Dolci C; Boehler CN; Santandrea E; Dewulf A; Ben-Hamed S; Macaluso E; Chelazzi L; Rashal E
    Atten Percept Psychophys; 2023 Aug; 85(6):1819-1833. PubMed ID: 37264294
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physical Salience and Value-Driven Salience Operate through Different Neural Mechanisms to Enhance Attentional Selection.
    Bachman MD; Wang L; Gamble ML; Woldorff MG
    J Neurosci; 2020 Jul; 40(28):5455-5464. PubMed ID: 32471878
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Altering spatial priority maps via statistical learning of target selection and distractor filtering.
    Ferrante O; Patacca A; Di Caro V; Della Libera C; Santandrea E; Chelazzi L
    Cortex; 2018 May; 102():67-95. PubMed ID: 29096874
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Early and late selection processes have separable influences on the neural substrates of attention.
    Drisdelle BL; Jolicoeur P
    Int J Psychophysiol; 2018 May; 127():52-61. PubMed ID: 29524444
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An EEG study of the combined effects of top-down and bottom-up attentional selection under varying task difficulty.
    Rashal E; Senoussi M; Santandrea E; Ben-Hamed S; Macaluso E; Chelazzi L; Boehler CN
    Psychophysiology; 2022 Jun; 59(6):e14002. PubMed ID: 35060631
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Express attentional re-engagement but delayed entry into consciousness following invalid spatial cues in visual search.
    Brisson B; Jolicoeur P
    PLoS One; 2008; 3(12):e3967. PubMed ID: 19088847
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Electrophysiological Markers of Statistically Learned Attentional Enhancement: Evidence for a Saliency-based Mechanism.
    Duncan DH; Theeuwes J; van Moorselaar D
    J Cogn Neurosci; 2023 Dec; 35(12):2110-2125. PubMed ID: 37801336
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Statistical learning of target location and distractor location rely on different mechanisms during visual search.
    Zhou X; Hao Y; Xu S; Zhang Q
    Atten Percept Psychophys; 2023 Feb; 85(2):342-365. PubMed ID: 36513850
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of top-down and bottom-up attention on post-selection posterior contralateral negativity.
    Rashal E; Santandrea E; Ben-Hamed S; Macaluso E; Chelazzi L; Boehler CN
    Atten Percept Psychophys; 2023 Apr; 85(3):705-717. PubMed ID: 36788197
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid top-down control over template-guided attention shifts to multiple objects.
    Grubert A; Fahrenfort J; Olivers CNL; Eimer M
    Neuroimage; 2017 Feb; 146():843-858. PubMed ID: 27554532
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stimulus- and Response-locked Posterior Contralateral Negativity Bisect Cognitive Operations in Visual Search.
    Drisdelle BL; Jolicœur P
    J Cogn Neurosci; 2019 Apr; 31(4):574-591. PubMed ID: 30566367
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Towards understanding how we pay attention in naturalistic visual search settings.
    Turoman N; Tivadar RI; Retsa C; Murray MM; Matusz PJ
    Neuroimage; 2021 Dec; 244():118556. PubMed ID: 34492292
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Statistical learning of distractor shape modulates attentional capture.
    Kim H; Ogden A; Anderson BA
    Vision Res; 2023 Jan; 202():108155. PubMed ID: 36417810
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Statistical learning of target and distractor spatial probability shape a common attentional priority computation.
    Ferrante O; Chelazzi L; Santandrea E
    Cortex; 2023 Dec; 169():95-117. PubMed ID: 37866062
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tracking target and distractor processing in fixed-feature visual search: evidence from human electrophysiology.
    Jannati A; Gaspar JM; McDonald JJ
    J Exp Psychol Hum Percept Perform; 2013 Dec; 39(6):1713-30. PubMed ID: 23527999
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reward learning and statistical learning independently influence attentional priority of salient distractors in visual search.
    Le Pelley ME; Ung R; Mine C; Most SB; Watson P; Pearson D; Theeuwes J
    Atten Percept Psychophys; 2022 Jul; 84(5):1446-1459. PubMed ID: 35013993
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of top-down spatial attention in contingent attentional capture.
    Huang W; Su Y; Zhen Y; Qu Z
    Psychophysiology; 2016 May; 53(5):650-62. PubMed ID: 26879628
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Saliency affects attentional capture and suppression of abrupt-onset and color singleton distractors: Evidence from event-related potential studies.
    Chen X; Xu B; Chen Y; Zeng X; Zhang Y; Fu S
    Psychophysiology; 2023 Aug; 60(8):e14290. PubMed ID: 36946491
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distractors less salient than targets capture attention rather than producing non-spatial filtering costs.
    Koch AI; Müller HJ; Zehetleitner M
    Acta Psychol (Amst); 2013 Sep; 144(1):61-72. PubMed ID: 23747508
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.