These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 38211890)

  • 1. Quantifying robustness of the gap gene network.
    Andreas E; Cummins B; Gedeon T
    J Theor Biol; 2024 Mar; 580():111720. PubMed ID: 38211890
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Robustness and state-space structure of Boolean gene regulatory models.
    Willadsen K; Wiles J
    J Theor Biol; 2007 Dec; 249(4):749-65. PubMed ID: 17936309
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evolution of early development in dipterans: reverse-engineering the gap gene network in the moth midge Clogmia albipunctata (Psychodidae).
    Crombach A; García-Solache MA; Jaeger J
    Biosystems; 2014 Sep; 123():74-85. PubMed ID: 24911671
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Robustness of expression pattern formation due to dynamic equilibrium in gap gene system of an early Drosophila embryo.
    Myasnikova E; Spirov A
    Biosystems; 2018 Apr; 166():50-60. PubMed ID: 29428618
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatiotemporal network motif reveals the biological traits of developmental gene regulatory networks in Drosophila melanogaster.
    Kim MS; Kim JR; Kim D; Lander AD; Cho KH
    BMC Syst Biol; 2012 May; 6():31. PubMed ID: 22548745
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Drosophila gap gene network is composed of two parallel toggle switches.
    Papatsenko D; Levine M
    PLoS One; 2011; 6(7):e21145. PubMed ID: 21747931
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A software tool to model genetic regulatory networks. Applications to the modeling of threshold phenomena and of spatial patterning in Drosophila.
    Dilão R; Muraro D
    PLoS One; 2010 May; 5(5):e10743. PubMed ID: 20523731
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An algebra-based method for inferring gene regulatory networks.
    Vera-Licona P; Jarrah A; Garcia-Puente LD; McGee J; Laubenbacher R
    BMC Syst Biol; 2014 Mar; 8():37. PubMed ID: 24669835
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient reverse-engineering of a developmental gene regulatory network.
    Crombach A; Wotton KR; Cicin-Sain D; Ashyraliyev M; Jaeger J
    PLoS Comput Biol; 2012; 8(7):e1002589. PubMed ID: 22807664
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bayesian model selection for the Drosophila gap gene network.
    Zubair A; Rosen IG; Nuzhdin SV; Marjoram P
    BMC Bioinformatics; 2019 Jun; 20(1):327. PubMed ID: 31195954
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temporal and spatial dynamics of scaling-specific features of a gene regulatory network in Drosophila.
    Wu H; Manu ; Jiao R; Ma J
    Nat Commun; 2015 Dec; 6():10031. PubMed ID: 26644070
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inferring Drosophila gap gene regulatory network: a parameter sensitivity and perturbation analysis.
    Fomekong-Nanfack Y; Postma M; Kaandorp JA
    BMC Syst Biol; 2009 Sep; 3():94. PubMed ID: 19769791
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gene network models robust to spatial scaling and noisy input.
    Hardway H
    Math Biosci; 2012 May; 237(1-2):1-16. PubMed ID: 22450033
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gap Gene Regulatory Dynamics Evolve along a Genotype Network.
    Crombach A; Wotton KR; Jiménez-Guri E; Jaeger J
    Mol Biol Evol; 2016 May; 33(5):1293-307. PubMed ID: 26796549
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Geometry and topology of parameter space: investigating measures of robustness in regulatory networks.
    Chaves M; Sengupta A; Sontag ED
    J Math Biol; 2009 Sep; 59(3):315-58. PubMed ID: 18987858
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combinatorial representation of parameter space for switching networks.
    Cummins B; Gedeon T; Harker S; Mischaikow K; Mok K
    SIAM J Appl Dyn Syst; 2016; 15(4):2176-2212. PubMed ID: 30774565
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling and analyzing complex biological networks incooperating experimental information on both network topology and stable states.
    Zou YM
    Bioinformatics; 2010 Aug; 26(16):2037-41. PubMed ID: 20601441
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Boolean modeling of biological regulatory networks: a methodology tutorial.
    Saadatpour A; Albert R
    Methods; 2013 Jul; 62(1):3-12. PubMed ID: 23142247
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predictive regulatory models in Drosophila melanogaster by integrative inference of transcriptional networks.
    Marbach D; Roy S; Ay F; Meyer PE; Candeias R; Kahveci T; Bristow CA; Kellis M
    Genome Res; 2012 Jul; 22(7):1334-49. PubMed ID: 22456606
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling the precision and robustness of Hunchback border during Drosophila embryonic development.
    Hardway H; Mukhopadhyay B; Burke T; James Hitchman T; Forman R
    J Theor Biol; 2008 Sep; 254(2):390-9. PubMed ID: 18621403
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.