These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 38211890)

  • 21. Modeling the precision and robustness of Hunchback border during Drosophila embryonic development.
    Hardway H; Mukhopadhyay B; Burke T; James Hitchman T; Forman R
    J Theor Biol; 2008 Sep; 254(2):390-9. PubMed ID: 18621403
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The gap gene network.
    Jaeger J
    Cell Mol Life Sci; 2011 Jan; 68(2):243-74. PubMed ID: 20927566
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Whole-embryo modeling of early segmentation in Drosophila identifies robust and fragile expression domains.
    Bieler J; Pozzorini C; Naef F
    Biophys J; 2011 Jul; 101(2):287-96. PubMed ID: 21767480
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Global robustness and identifiability of random, scale-free, and small-world networks.
    Gong Y; Zhang Z
    Ann N Y Acad Sci; 2009 Mar; 1158():82-92. PubMed ID: 19348634
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The early Drosophila embryo as a model system for quantitative biology.
    Saunders TE
    Cells Dev; 2021 Dec; 168():203722. PubMed ID: 34298230
    [TBL] [Abstract][Full Text] [Related]  

  • 26. In search of a Drosophila core cellular network with single-cell transcriptome data.
    Yang M; Harrison BR; Promislow DEL
    G3 (Bethesda); 2022 Sep; 12(10):. PubMed ID: 35976114
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Translating natural genetic variation to gene expression in a computational model of the Drosophila gap gene regulatory network.
    Gursky VV; Kozlov KN; Kulakovskiy IV; Zubair A; Marjoram P; Lawrie DS; Nuzhdin SV; Samsonova MG
    PLoS One; 2017; 12(9):e0184657. PubMed ID: 28898266
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Robustness under functional constraint: the genetic network for temporal expression in Drosophila neurogenesis.
    Nakajima A; Isshiki T; Kaneko K; Ishihara S
    PLoS Comput Biol; 2010 Apr; 6(4):e1000760. PubMed ID: 20454677
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Spatial bistability generates hunchback expression sharpness in the Drosophila embryo.
    Lopes FJ; Vieira FM; Holloway DM; Bisch PM; Spirov AV
    PLoS Comput Biol; 2008 Sep; 4(9):e1000184. PubMed ID: 18818726
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Analysis of gap gene regulation in a 3D organism-scale model of the Drosophila melanogaster embryo.
    Hengenius JB; Gribskov M; Rundell AE; Fowlkes CC; Umulis DM
    PLoS One; 2011; 6(11):e26797. PubMed ID: 22110594
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Transcriptional control in the segmentation gene network of Drosophila.
    Schroeder MD; Pearce M; Fak J; Fan H; Unnerstall U; Emberly E; Rajewsky N; Siggia ED; Gaul U
    PLoS Biol; 2004 Sep; 2(9):E271. PubMed ID: 15340490
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Morphogenesis at criticality.
    Krotov D; Dubuis JO; Gregor T; Bialek W
    Proc Natl Acad Sci U S A; 2014 Mar; 111(10):3683-8. PubMed ID: 24516161
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A gene expression atlas of a bicoid-depleted Drosophila embryo reveals early canalization of cell fate.
    Staller MV; Fowlkes CC; Bragdon MD; Wunderlich Z; Estrada J; DePace AH
    Development; 2015 Feb; 142(3):587-96. PubMed ID: 25605785
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Gene regulatory networks during the development of the Drosophila visual system.
    Chen YC; Desplan C
    Curr Top Dev Biol; 2020; 139():89-125. PubMed ID: 32450970
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Innovation and robustness in complex regulatory gene networks.
    Ciliberti S; Martin OC; Wagner A
    Proc Natl Acad Sci U S A; 2007 Aug; 104(34):13591-6. PubMed ID: 17690244
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Robustness of circadian timing systems evolves in the fruit fly Drosophila melanogaster as a correlated response to selection for adult emergence in a narrow window of time.
    Kannan NN; Mukherjee N; Sharma VK
    Chronobiol Int; 2012 Dec; 29(10):1312-28. PubMed ID: 23130824
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The effect of scale-free topology on the robustness and evolvability of genetic regulatory networks.
    Greenbury SF; Johnston IG; Smith MA; Doye JP; Louis AA
    J Theor Biol; 2010 Nov; 267(1):48-61. PubMed ID: 20696172
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Assessing biological network dynamics: comparing numerical simulations with analytical decomposition of parameter space.
    Hari K; Duncan W; Ibrahim MA; Jolly MK; Cummins B; Gedeon T
    NPJ Syst Biol Appl; 2023 Jul; 9(1):29. PubMed ID: 37400474
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Optimal Decoding of Cellular Identities in a Genetic Network.
    Petkova MD; Tkačik G; Bialek W; Wieschaus EF; Gregor T
    Cell; 2019 Feb; 176(4):844-855.e15. PubMed ID: 30712870
    [TBL] [Abstract][Full Text] [Related]  

  • 40. MIGGRI: A multi-instance graph neural network model for inferring gene regulatory networks for Drosophila from spatial expression images.
    Huang Y; Yu G; Yang Y
    PLoS Comput Biol; 2023 Nov; 19(11):e1011623. PubMed ID: 37939200
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.