These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 38212467)
21. Wearable Accelerometer and Gyroscope Sensors for Estimating the Severity of Essential Tremor. Ali SM; Arjunan SP; Peter J; Perju-Dumbrava L; Ding C; Eller M; Raghav S; Kempster P; Motin MA; Radcliffe PJ; Kumar DK IEEE J Transl Eng Health Med; 2024; 12():194-203. PubMed ID: 38196822 [TBL] [Abstract][Full Text] [Related]
22. Estimation of 3D Body Center of Mass Acceleration and Instantaneous Velocity from a Wearable Inertial Sensor Network in Transfemoral Amputee Gait: A Case Study. Simonetti E; Bergamini E; Vannozzi G; Bascou J; Pillet H Sensors (Basel); 2021 Apr; 21(9):. PubMed ID: 33946325 [TBL] [Abstract][Full Text] [Related]
23. Validity of a wearable accelerometer to quantify gait in spinocerebellar ataxia type 6. Hickey A; Gunn E; Alcock L; Del Din S; Godfrey A; Rochester L; Galna B Physiol Meas; 2016 Nov; 37(11):N105-N117. PubMed ID: 27779133 [TBL] [Abstract][Full Text] [Related]
24. Validity of a trunk-mounted accelerometer to assess peak accelerations during walking, jogging and running. Wundersitz DW; Gastin PB; Richter C; Robertson SJ; Netto KJ Eur J Sport Sci; 2015; 15(5):382-90. PubMed ID: 25196466 [TBL] [Abstract][Full Text] [Related]
25. CARL: a running recognition algorithm for free-living accelerometer data. Davis JJ; Straczkiewicz M; Harezlak J; Gruber AH Physiol Meas; 2021 Dec; 42(11):. PubMed ID: 34883471 [TBL] [Abstract][Full Text] [Related]
26. High-accuracy wearable detection of freezing of gait in Parkinson's disease based on pseudo-multimodal features. Guo Y; Huang D; Zhang W; Wang L; Li Y; Olmo G; Wang Q; Meng F; Chan P Comput Biol Med; 2022 Jul; 146():105629. PubMed ID: 35659119 [TBL] [Abstract][Full Text] [Related]
27. Detection of Hemiplegic Walking Using a Wearable Inertia Sensing Device. Lee J; Park S; Shin H Sensors (Basel); 2018 May; 18(6):. PubMed ID: 29843413 [TBL] [Abstract][Full Text] [Related]
28. Gait regularity assessed by wearable sensors: Comparison between accelerometer and gyroscope data for different sensor locations and walking speeds in healthy subjects. Scalera GM; Ferrarin M; Rabuffetti M J Biomech; 2020 Dec; 113():110115. PubMed ID: 33221581 [TBL] [Abstract][Full Text] [Related]
29. Design of a Machine Learning-Assisted Wearable Accelerometer-Based Automated System for Studying the Effect of Dopaminergic Medicine on Gait Characteristics of Parkinson's Patients. Aich S; Pradhan PM; Chakraborty S; Kim HC; Kim HT; Lee HG; Kim IH; Joo MI; Jong Seong S; Park J J Healthc Eng; 2020; 2020():1823268. PubMed ID: 32148741 [TBL] [Abstract][Full Text] [Related]
30. Using Lower Limb Wearable Sensors to Identify Gait Modalities: A Machine-Learning-Based Approach. Hughes LD; Bencsik M; Bisele M; Barnett CT Sensors (Basel); 2023 Nov; 23(22):. PubMed ID: 38005627 [TBL] [Abstract][Full Text] [Related]
31. Graduate Student Literature Review: Evaluating the appropriate use of wearable accelerometers in research to monitor lying behaviors of dairy cows. Hendriks SJ; Phyn CVC; Huzzey JM; Mueller KR; Turner SA; Donaghy DJ; Roche JR J Dairy Sci; 2020 Dec; 103(12):12140-12157. PubMed ID: 33069407 [TBL] [Abstract][Full Text] [Related]
32. Assessing elderly's functional balance and mobility via analyzing data from waist-mounted tri-axial wearable accelerometers in timed up and go tests. Yu L; Zhao Y; Wang H; Sun TL; Murphy TE; Tsui KL BMC Med Inform Decis Mak; 2021 Mar; 21(1):108. PubMed ID: 33766011 [TBL] [Abstract][Full Text] [Related]
33. Wrist-worn Accelerometry for Runners: Objective Quantification of Training Load. Stiles VH; Pearce M; Moore IS; Langford J; Rowlands AV Med Sci Sports Exerc; 2018 Nov; 50(11):2277-2284. PubMed ID: 30067593 [TBL] [Abstract][Full Text] [Related]
34. Real-time gait cycle parameter recognition using a wearable accelerometry system. Yang CC; Hsu YL; Shih KS; Lu JM Sensors (Basel); 2011; 11(8):7314-26. PubMed ID: 22164019 [TBL] [Abstract][Full Text] [Related]
35. Alterations in gait parameters with peripheral artery disease: The importance of pre-frailty as a confounding variable. Toosizadeh N; Stocker H; Thiede R; Mohler J; Mills JL; Najafi B Vasc Med; 2016 Dec; 21(6):520-527. PubMed ID: 27634957 [TBL] [Abstract][Full Text] [Related]
36. Validation of a low-cost wearable accelerometer for temporal gait parameter quantification. Ben Mansour K; Rezzoug N; Jacquier-Bret J; Gorce P Comput Methods Biomech Biomed Engin; 2014; 17 Suppl 1():160-1. PubMed ID: 25074214 [No Abstract] [Full Text] [Related]
37. Wearables for Running Gait Analysis: A Systematic Review. Mason R; Pearson LT; Barry G; Young F; Lennon O; Godfrey A; Stuart S Sports Med; 2023 Jan; 53(1):241-268. PubMed ID: 36242762 [TBL] [Abstract][Full Text] [Related]
38. Analysis of dual-task elderly gait using wearable plantar-pressure insoles and accelerometer. Howcroft JD; Lemaire ED; Kofman J; McIlroy WE Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():5003-6. PubMed ID: 25571116 [TBL] [Abstract][Full Text] [Related]
39. A review of accelerometry-based wearable motion detectors for physical activity monitoring. Yang CC; Hsu YL Sensors (Basel); 2010; 10(8):7772-88. PubMed ID: 22163626 [TBL] [Abstract][Full Text] [Related]
40. Deep Neural Network-Based Gait Classification Using Wearable Inertial Sensor Data. Jung D; Nguyen MD; Han J; Park M; Lee K; Yoo S; Kim J; Mun KR Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():3624-3628. PubMed ID: 31946661 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]