These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 38212467)
41. Wearable Inertial Sensor System Towards Daily Human Kinematic Gait Analysis: Benchmarking Analysis to MVN BIOMECH. Figueiredo J; Carvalho SP; Vilas-Boas JP; Gonçalves LM; Moreno JC; Santos CP Sensors (Basel); 2020 Apr; 20(8):. PubMed ID: 32290636 [TBL] [Abstract][Full Text] [Related]
42. Using wearable monitors to assess daily walking limitations induced by ischemic pain in peripheral artery disease. Chaudru S; Jehannin P; de Müllenheim PY; Klein H; Jaquinandi V; Mahé G; Le Faucheur A Scand J Med Sci Sports; 2019 Nov; 29(11):1813-1826. PubMed ID: 31271680 [TBL] [Abstract][Full Text] [Related]
43. Wearable accelerometers for measuring and monitoring the motor behaviour of infants with brain damage during CareToy-Revised training. Franchi De' Cavalieri M; Filogna S; Martini G; Beani E; Maselli M; Cianchetti M; Dubbini N; Cioni G; Sgandurra G; J Neuroeng Rehabil; 2023 May; 20(1):62. PubMed ID: 37149595 [TBL] [Abstract][Full Text] [Related]
44. A Longitudinal Wearable Sensor Study in Huntington's Disease. Dinesh K; Snyder CW; Xiong M; Tarolli CG; Sharma S; Dorsey ER; Sharma G; Adams JL J Huntingtons Dis; 2020; 9(1):69-81. PubMed ID: 31868675 [TBL] [Abstract][Full Text] [Related]
45. Novel methodology for estimating Initial Contact events from accelerometers positioned at different body locations. Khandelwal S; Wickström N Gait Posture; 2018 Jan; 59():278-285. PubMed ID: 28780277 [TBL] [Abstract][Full Text] [Related]
46. Gait and posture discrimination in sheep using a tri-axial accelerometer. Radeski M; Ilieski V Animal; 2017 Jul; 11(7):1249-1257. PubMed ID: 27903315 [TBL] [Abstract][Full Text] [Related]
47. Accelerometry: a technique for quantifying movement patterns during walking. Kavanagh JJ; Menz HB Gait Posture; 2008 Jul; 28(1):1-15. PubMed ID: 18178436 [TBL] [Abstract][Full Text] [Related]
48. PSG Validation of minute-to-minute scoring for sleep and wake periods in a consumer wearable device. Cheung J; Leary EB; Lu H; Zeitzer JM; Mignot E PLoS One; 2020; 15(9):e0238464. PubMed ID: 32941498 [TBL] [Abstract][Full Text] [Related]
49. Methodology and validation for identifying gait type using machine learning on IMU data. Mahoney JM; Rhudy MB J Med Eng Technol; 2019 Jan; 43(1):25-32. PubMed ID: 31037995 [TBL] [Abstract][Full Text] [Related]
50. Investigating Wrist-Based Acceleration Summary Measures across Different Sample Rates towards 24-Hour Physical Activity and Sleep Profile Assessment. Tsanas A Sensors (Basel); 2022 Aug; 22(16):. PubMed ID: 36015910 [TBL] [Abstract][Full Text] [Related]
51. User Identification from Gait Analysis Using Multi-Modal Sensors in Smart Insole. Choi SI; Moon J; Park HC; Choi ST Sensors (Basel); 2019 Aug; 19(17):. PubMed ID: 31480467 [TBL] [Abstract][Full Text] [Related]
52. Use of smartphones and portable media devices for quantifying human movement characteristics of gait, tendon reflex response, and Parkinson's disease hand tremor. LeMoyne R; Mastroianni T Methods Mol Biol; 2015; 1256():335-58. PubMed ID: 25626550 [TBL] [Abstract][Full Text] [Related]
53. Use of a wearable accelerometer to evaluate physical frailty in people receiving haemodialysis. Zanotto T; Mercer TH; van der Linden ML; Traynor JP; Koufaki P BMC Nephrol; 2023 Mar; 24(1):82. PubMed ID: 36997888 [TBL] [Abstract][Full Text] [Related]
54. Walking stability in patients with benign paroxysmal positional vertigo: an objective assessment using wearable accelerometers and machine learning. Zhang Y; Wang H; Yao Y; Liu J; Sun X; Gu D J Neuroeng Rehabil; 2021 Mar; 18(1):56. PubMed ID: 33789693 [TBL] [Abstract][Full Text] [Related]
55. Faller Classification in Older Adults Using Wearable Sensors Based on Turn and Straight-Walking Accelerometer-Based Features. Drover D; Howcroft J; Kofman J; Lemaire ED Sensors (Basel); 2017 Jun; 17(6):. PubMed ID: 28590432 [TBL] [Abstract][Full Text] [Related]
56. A gait stability evaluation method based on wearable acceleration sensors. Weng X; Mei C; Gao F; Wu X; Zhang Q; Liu G Math Biosci Eng; 2023 Nov; 20(11):20002-20024. PubMed ID: 38052634 [TBL] [Abstract][Full Text] [Related]
57. Estimation of temporal gait parameters using Bayesian models on acceleration signals. López-Nava IH; Muñoz-Meléndez A; Pérez Sanpablo AI; Alessi Montero A; Quiñones Urióstegui I; Núñez Carrera L Comput Methods Biomech Biomed Engin; 2016; 19(4):396-403. PubMed ID: 25876180 [TBL] [Abstract][Full Text] [Related]
58. Real-time gait event detection using wearable sensors. Hanlon M; Anderson R Gait Posture; 2009 Nov; 30(4):523-7. PubMed ID: 19729307 [TBL] [Abstract][Full Text] [Related]
59. Sleep stage prediction with raw acceleration and photoplethysmography heart rate data derived from a consumer wearable device. Walch O; Huang Y; Forger D; Goldstein C Sleep; 2019 Dec; 42(12):. PubMed ID: 31579900 [TBL] [Abstract][Full Text] [Related]
60. Analysis of dual-task elderly gait in fallers and non-fallers using wearable sensors. Howcroft J; Kofman J; Lemaire ED; McIlroy WE J Biomech; 2016 May; 49(7):992-1001. PubMed ID: 26994786 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]