These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 38212467)
61. An open-source tool to identify active travel from hip-worn accelerometer, GPS and GIS data. Procter DS; Page AS; Cooper AR; Nightingale CM; Ram B; Rudnicka AR; Whincup PH; Clary C; Lewis D; Cummins S; Ellaway A; Giles-Corti B; Cook DG; Owen CG Int J Behav Nutr Phys Act; 2018 Sep; 15(1):91. PubMed ID: 30241483 [TBL] [Abstract][Full Text] [Related]
62. Integrating wearables and modelling for monitoring rehabilitation following total knee joint replacement. Yeung S; Kim HK; Carleton A; Munro J; Ferguson D; Monk AP; Zhang J; Besier T; Fernandez J Comput Methods Programs Biomed; 2022 Oct; 225():107063. PubMed ID: 35994872 [TBL] [Abstract][Full Text] [Related]
63. Prospective Fall-Risk Prediction Models for Older Adults Based on Wearable Sensors. Howcroft J; Kofman J; Lemaire ED IEEE Trans Neural Syst Rehabil Eng; 2017 Oct; 25(10):1812-1820. PubMed ID: 28358689 [TBL] [Abstract][Full Text] [Related]
64. Wearable Sensor Data to Track Subject-Specific Movement Patterns Related to Clinical Outcomes Using a Machine Learning Approach. Kobsar D; Ferber R Sensors (Basel); 2018 Aug; 18(9):. PubMed ID: 30150560 [TBL] [Abstract][Full Text] [Related]
65. Acceleration profile of an acrobatic act during training and shows using wearable technology. Barker L; Burnstein B; Mercer J Sports Biomech; 2020 Apr; 19(2):201-211. PubMed ID: 29792560 [TBL] [Abstract][Full Text] [Related]
66. Prediction of Freezing of Gait in Parkinson's Disease Using Statistical Inference and Lower-Limb Acceleration Data. Naghavi N; Wade E IEEE Trans Neural Syst Rehabil Eng; 2019 May; 27(5):947-955. PubMed ID: 30990186 [TBL] [Abstract][Full Text] [Related]
67. Estimation of vertical walking ground reaction force in real-life environments using single IMU sensor. Shahabpoor E; Pavic A J Biomech; 2018 Oct; 79():181-190. PubMed ID: 30195851 [TBL] [Abstract][Full Text] [Related]
68. Portable accelerometers for the evaluation of spatio-temporal gait parameters in people with Parkinson's disease: an integrative review. de Oliveira Gondim ITG; de Souza CCB; Rodrigues MAB; Azevedo IM; de Sales Coriolano MDGW; Lins OG Arch Gerontol Geriatr; 2020; 90():104097. PubMed ID: 32531644 [TBL] [Abstract][Full Text] [Related]
69. Prediction of Freezing of Gait in Parkinson's Disease Using Wearables and Machine Learning. Borzì L; Mazzetta I; Zampogna A; Suppa A; Olmo G; Irrera F Sensors (Basel); 2021 Jan; 21(2):. PubMed ID: 33477323 [TBL] [Abstract][Full Text] [Related]
70. Advances in accelerometry for cardiovascular patients: a systematic review with practical recommendations. Vetrovsky T; Clark CCT; Bisi MC; Siranec M; Linhart A; Tufano JJ; Duncan MJ; Belohlavek J ESC Heart Fail; 2020 Oct; 7(5):2021-2031. PubMed ID: 32618431 [TBL] [Abstract][Full Text] [Related]
71. A Wearable Flow-MIMU Device for Monitoring Human Dynamic Motion. Liu SQ; Zhang JC; Li GZ; Zhu R IEEE Trans Neural Syst Rehabil Eng; 2020 Mar; 28(3):637-645. PubMed ID: 32031941 [TBL] [Abstract][Full Text] [Related]
72. Quantifying Variation in Gait Features from Wearable Inertial Sensors Using Mixed Effects Models. Cresswell KG; Shin Y; Chen S Sensors (Basel); 2017 Feb; 17(3):. PubMed ID: 28245602 [TBL] [Abstract][Full Text] [Related]
73. Use of accelerometry to investigate standing and dynamic body balance in people with cerebral palsy: A systematic review. Valenciano PJ; Conceição NR; Marcori AJ; Teixeira LA Gait Posture; 2022 Jul; 96():357-364. PubMed ID: 35820240 [TBL] [Abstract][Full Text] [Related]
74. Effect of sampling rate on acceleration and counts of hip- and wrist-worn ActiGraph accelerometers in children. Clevenger KA; Pfeiffer KA; Mackintosh KA; McNarry MA; Brønd J; Arvidsson D; Montoye AHK Physiol Meas; 2019 Sep; 40(9):095008. PubMed ID: 31518999 [TBL] [Abstract][Full Text] [Related]
75. Smoothness of Gait in Healthy and Cognitively Impaired Individuals: A Study on Italian Elderly Using Wearable Inertial Sensor. Pau M; Mulas I; Putzu V; Asoni G; Viale D; Mameli I; Leban B; Allali G Sensors (Basel); 2020 Jun; 20(12):. PubMed ID: 32599872 [TBL] [Abstract][Full Text] [Related]
76. Detection of Parkinson's Disease Using Wrist Accelerometer Data and Passive Monitoring. Rastegari E; Ali H; Marmelat V Sensors (Basel); 2022 Nov; 22(23):. PubMed ID: 36501823 [TBL] [Abstract][Full Text] [Related]
77. Gait Events Prediction Using Hybrid CNN-RNN-Based Deep Learning Models through a Single Waist-Worn Wearable Sensor. Arshad MZ; Jamsrandorj A; Kim J; Mun KR Sensors (Basel); 2022 Oct; 22(21):. PubMed ID: 36365930 [TBL] [Abstract][Full Text] [Related]
78. The Contribution of Machine Learning in the Validation of Commercial Wearable Sensors for Gait Monitoring in Patients: A Systematic Review. Jourdan T; Debs N; Frindel C Sensors (Basel); 2021 Jul; 21(14):. PubMed ID: 34300546 [TBL] [Abstract][Full Text] [Related]
79. AccNet24: A deep learning framework for classifying 24-hour activity behaviours from wrist-worn accelerometer data under free-living environments. Farrahi V; Muhammad U; Rostami M; Oussalah M Int J Med Inform; 2023 Apr; 172():105004. PubMed ID: 36724729 [TBL] [Abstract][Full Text] [Related]
80. Assessment of Sit-to-Stand Transfers during Daily Life Using an Accelerometer on the Lower Back. Adamowicz L; Karahanoglu FI; Cicalo C; Zhang H; Demanuele C; Santamaria M; Cai X; Patel S Sensors (Basel); 2020 Nov; 20(22):. PubMed ID: 33228035 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]