BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 38212571)

  • 1. RFGR: Repeat Finder for Complete and Assembled Whole Genomes and NGS Reads.
    Sukumaran R; Shahina K; Nair AS
    Biochem Genet; 2024 Jan; ():. PubMed ID: 38212571
    [TBL] [Abstract][Full Text] [Related]  

  • 2. RepAHR: an improved approach for de novo repeat identification by assembly of the high-frequency reads.
    Liao X; Gao X; Zhang X; Wu FX; Wang J
    BMC Bioinformatics; 2020 Oct; 21(1):463. PubMed ID: 33076827
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome assembly composition of the String "ACGT" array: a review of data structure accuracy and performance challenges.
    Magdy Mohamed Abdelaziz Barakat S; Sallehuddin R; Yuhaniz SS; R Khairuddin RF; Mahmood Y
    PeerJ Comput Sci; 2023; 9():e1180. PubMed ID: 37547391
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RepARK--de novo creation of repeat libraries from whole-genome NGS reads.
    Koch P; Platzer M; Downie BR
    Nucleic Acids Res; 2014 May; 42(9):e80. PubMed ID: 24634442
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An improved approach for reconstructing consensus repeats from short sequence reads.
    Chu C; Pei J; Wu Y
    BMC Genomics; 2018 Aug; 19(Suppl 6):566. PubMed ID: 30367582
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assembly of highly repetitive genomes using short reads: the genome of discrete typing unit III Trypanosoma cruzi strain 231.
    Baptista RP; Reis-Cunha JL; DeBarry JD; Chiari E; Kissinger JC; Bartholomeu DC; Macedo AM
    Microb Genom; 2018 Apr; 4(4):. PubMed ID: 29442617
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The nature and genomic landscape of repetitive DNA classes in Chrysanthemum nankingense shows recent genomic changes.
    Zhang F; Chen F; Schwarzacher T; Heslop-Harrison JS; Teng N
    Ann Bot; 2023 Feb; 131(1):215-228. PubMed ID: 35639931
    [TBL] [Abstract][Full Text] [Related]  

  • 8. From NGS assembly challenges to instability of fungal mitochondrial genomes: A case study in genome complexity.
    Misas E; Muñoz JF; Gallo JE; McEwen JG; Clay OK
    Comput Biol Chem; 2016 Apr; 61():258-69. PubMed ID: 26970210
    [TBL] [Abstract][Full Text] [Related]  

  • 9. GAPPadder: a sensitive approach for closing gaps on draft genomes with short sequence reads.
    Chu C; Li X; Wu Y
    BMC Genomics; 2019 Jun; 20(Suppl 5):426. PubMed ID: 31167639
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of ONT and CCS sequencing technologies on the polyploid genome of a medicinal plant showed that high error rate of ONT reads are not suitable for self-correction.
    Zeng P; Tian Z; Han Y; Zhang W; Zhou T; Peng Y; Hu H; Cai J
    Chin Med; 2022 Aug; 17(1):94. PubMed ID: 35945546
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Statistical Mitogenome Assembly with RepeaTs.
    Alqahtani F; Măndoiu II
    J Comput Biol; 2020 Sep; 27(9):1407-1421. PubMed ID: 32048871
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combination of de novo assembly of massive sequencing reads with classical repeat prediction improves identification of repetitive sequences in Schistosoma mansoni.
    Lepesant JM; Roquis D; Emans R; Cosseau C; Arancibia N; Mitta G; Grunau C
    Exp Parasitol; 2012 Apr; 130(4):470-4. PubMed ID: 22381218
    [TBL] [Abstract][Full Text] [Related]  

  • 13. BASE: a practical de novo assembler for large genomes using long NGS reads.
    Liu B; Liu CM; Li D; Li Y; Ting HF; Yiu SM; Luo R; Lam TW
    BMC Genomics; 2016 Aug; 17 Suppl 5(Suppl 5):499. PubMed ID: 27586129
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Annotation-based genome-wide SNP discovery in the large and complex Aegilops tauschii genome using next-generation sequencing without a reference genome sequence.
    You FM; Huo N; Deal KR; Gu YQ; Luo MC; McGuire PE; Dvorak J; Anderson OD
    BMC Genomics; 2011 Jan; 12():59. PubMed ID: 21266061
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Read length and repeat resolution: exploring prokaryote genomes using next-generation sequencing technologies.
    Cahill MJ; Köser CU; Ross NE; Archer JA
    PLoS One; 2010 Jul; 5(7):e11518. PubMed ID: 20634954
    [TBL] [Abstract][Full Text] [Related]  

  • 16. HISEA: HIerarchical SEed Aligner for PacBio data.
    Khiste N; Ilie L
    BMC Bioinformatics; 2017 Dec; 18(1):564. PubMed ID: 29258419
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assembly of chromosome-scale contigs by efficiently resolving repetitive sequences with long reads.
    Du H; Liang C
    Nat Commun; 2019 Nov; 10(1):5360. PubMed ID: 31767853
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A combined de novo assembly approach increases the quality of prokaryotic draft genomes.
    Çabuk U; Ünlü ES
    Folia Microbiol (Praha); 2022 Oct; 67(5):801-810. PubMed ID: 35668290
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Finding long tandem repeats in long noisy reads.
    Morishita S; Ichikawa K; Myers EW
    Bioinformatics; 2021 May; 37(5):612-621. PubMed ID: 33031558
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low-pass shotgun sequencing of the barley genome facilitates rapid identification of genes, conserved non-coding sequences and novel repeats.
    Wicker T; Narechania A; Sabot F; Stein J; Vu GT; Graner A; Ware D; Stein N
    BMC Genomics; 2008 Oct; 9():518. PubMed ID: 18976483
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.