BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 38212843)

  • 1. Nanocatalytic Anti-Tumor Immune Regulation.
    Li M; Jiang H; Hu P; Shi J
    Angew Chem Int Ed Engl; 2024 Mar; 63(13):e202316606. PubMed ID: 38212843
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transitional Metal-Based Noncatalytic Medicine for Tumor Therapy.
    Wu W; Pu Y; Lu X; Lin H; Shi J
    Adv Healthc Mater; 2021 Jun; 10(11):e2001819. PubMed ID: 33857353
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrasmall Cu
    Hu R; Fang Y; Huo M; Yao H; Wang C; Chen Y; Wu R
    Biomaterials; 2019 Jun; 206():101-114. PubMed ID: 30927714
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photonic/magnetic hyperthermia-synergistic nanocatalytic cancer therapy enabled by zero-valence iron nanocatalysts.
    Dai C; Wang C; Hu R; Lin H; Liu Z; Yu L; Chen Y; Zhang B
    Biomaterials; 2019 Oct; 219():119374. PubMed ID: 31369897
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanocatalysts-Augmented and Photothermal-Enhanced Tumor-Specific Sequential Nanocatalytic Therapy in Both NIR-I and NIR-II Biowindows.
    Feng W; Han X; Wang R; Gao X; Hu P; Yue W; Chen Y; Shi J
    Adv Mater; 2019 Feb; 31(5):e1805919. PubMed ID: 30536723
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Triggering Sequential Catalytic Fenton Reaction on 2D MXenes for Hyperthermia-Augmented Synergistic Nanocatalytic Cancer Therapy.
    Liang R; Li Y; Huo M; Lin H; Chen Y
    ACS Appl Mater Interfaces; 2019 Nov; 11(46):42917-42931. PubMed ID: 31635454
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single-Atom Catalysts for Nanocatalytic Tumor Therapy.
    Lu X; Gao S; Lin H; Shi J
    Small; 2021 Apr; 17(16):e2004467. PubMed ID: 33448133
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanocatalytic bacteria disintegration reverses immunosuppression of colorectal cancer.
    Jiang H; Guo Y; Yu Z; Hu P; Shi J
    Natl Sci Rev; 2022 Nov; 9(11):nwac169. PubMed ID: 36381212
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanozyme-like single-atom catalyst combined with artesunate achieves photothermal-enhanced nanocatalytic therapy in the near-infrared biowindow.
    Lv Q; Chi K; Shi X; Liu M; Li X; Zhou C; Shi L; Fan H; Liu H; Liu J; Zhang Y; Wang S; Wang L; Wang Z
    Acta Biomater; 2023 Mar; 158():686-697. PubMed ID: 36623782
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanocatalytic Tumor Therapy by Biomimetic Dual Inorganic Nanozyme-Catalyzed Cascade Reaction.
    Gao S; Lin H; Zhang H; Yao H; Chen Y; Shi J
    Adv Sci (Weinh); 2019 Feb; 6(3):1801733. PubMed ID: 31168441
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MnOOH-Catalyzed Autoxidation of Glutathione for Reactive Oxygen Species Production and Nanocatalytic Tumor Innate Immunotherapy.
    Zhu P; Pu Y; Wang M; Wu W; Qin H; Shi J
    J Am Chem Soc; 2023 Mar; 145(10):5803-5815. PubMed ID: 36848658
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dual Size/Charge-Switchable Nanocatalytic Medicine for Deep Tumor Therapy.
    Wu W; Pu Y; Shi J
    Adv Sci (Weinh); 2021 May; 8(9):2002816. PubMed ID: 33977044
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanocatalysts-augmented Fenton chemical reaction for nanocatalytic tumor therapy.
    Qian X; Zhang J; Gu Z; Chen Y
    Biomaterials; 2019 Aug; 211():1-13. PubMed ID: 31075521
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two-dimensional silicene composite nanosheets enable exogenous/endogenous-responsive and synergistic hyperthermia-augmented catalytic tumor theranostics.
    Duan H; Guo H; Zhang R; Wang F; Liu Z; Ge M; Yu L; Lin H; Chen Y
    Biomaterials; 2020 Oct; 256():120206. PubMed ID: 32599359
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanocatalytic Medicine.
    Yang B; Chen Y; Shi J
    Adv Mater; 2019 Sep; 31(39):e1901778. PubMed ID: 31328844
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Manganese-enriched photonic/catalytic nanomedicine augments synergistic anti-TNBC photothermal/nanocatalytic/immuno-therapy via activating cGAS-STING pathway.
    Zheng Y; Chen J; Song XR; Chang MQ; Feng W; Huang H; Jia CX; Ding L; Chen Y; Wu R
    Biomaterials; 2023 Feb; 293():121988. PubMed ID: 36580716
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Future perspectives in melanoma research : Meeting report from the "Melanoma Bridge". Napoli, December 1st-4th 2015.
    Ascierto PA; Agarwala S; Botti G; Cesano A; Ciliberto G; Davies MA; Demaria S; Dummer R; Eggermont AM; Ferrone S; Fu YX; Gajewski TF; Garbe C; Huber V; Khleif S; Krauthammer M; Lo RS; Masucci G; Palmieri G; Postow M; Puzanov I; Silk A; Spranger S; Stroncek DF; Tarhini A; Taube JM; Testori A; Wang E; Wargo JA; Yee C; Zarour H; Zitvogel L; Fox BA; Mozzillo N; Marincola FM; Thurin M
    J Transl Med; 2016 Nov; 14(1):313. PubMed ID: 27846884
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bacterial Metabolism-Initiated Nanocatalytic Tumor Immunotherapy.
    Wu W; Pu Y; Gao S; Shen Y; Zhou M; Yao H; Shi J
    Nanomicro Lett; 2022 Nov; 14(1):220. PubMed ID: 36367591
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Boosting Reactive Oxygen Species Generation with a Dual-Catalytic Nanomedicine for Enhanced Tumor Nanocatalytic Therapy.
    Su G; Xu H; Zhou F; Gong X; Tan S; He Y
    ACS Appl Mater Interfaces; 2023 Dec; 15(51):59175-59188. PubMed ID: 38095444
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Semiconducting Polymer Nanoparticles for Photoactivatable Cancer Immunotherapy and Imaging of Immunoactivation.
    Zhou W; He X; Wang J; He S; Xie C; Fan Q; Pu K
    Biomacromolecules; 2022 Apr; 23(4):1490-1504. PubMed ID: 35286085
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.