These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 38212866)

  • 21. Olefin cis-dihydroxylation with bio-inspired iron catalysts. evidence for an Fe(II)/Fe(IV) catalytic cycle.
    Oldenburg PD; Feng Y; Pryjomska-Ray I; Ness D; Que L
    J Am Chem Soc; 2010 Dec; 132(50):17713-23. PubMed ID: 21105649
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Computational Study of Aromatic Hydroxylation Catalyzed by the Iron-Dependent Hydroxylase PqqB Involved in the Biosynthesis of Redox Cofactor Pyrroloquinoline Quinone.
    Liu Y; Liu Y
    Inorg Chem; 2022 Apr; 61(15):5943-5956. PubMed ID: 35362953
    [TBL] [Abstract][Full Text] [Related]  

  • 23. High-valent iron in chemical and biological oxidations.
    Groves JT
    J Inorg Biochem; 2006 Apr; 100(4):434-47. PubMed ID: 16516297
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mechanism of selective benzene hydroxylation catalyzed by iron-containing zeolites.
    Snyder BER; Bols ML; Rhoda HM; Vanelderen P; Böttger LH; Braun A; Yan JJ; Hadt RG; Babicz JT; Hu MY; Zhao J; Alp EE; Hedman B; Hodgson KO; Schoonheydt RA; Sels BF; Solomon EI
    Proc Natl Acad Sci U S A; 2018 Nov; 115(48):12124-12129. PubMed ID: 30429333
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Trends in substrate hydroxylation reactions by heme and nonheme iron(IV)-oxo oxidants give correlations between intrinsic properties of the oxidant with barrier height.
    de Visser SP
    J Am Chem Soc; 2010 Jan; 132(3):1087-97. PubMed ID: 20041691
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Rate-Determining Attack on Substrate Precedes Rieske Cluster Oxidation during Cis-Dihydroxylation by Benzoate Dioxygenase.
    Rivard BS; Rogers MS; Marell DJ; Neibergall MB; Chakrabarty S; Cramer CJ; Lipscomb JD
    Biochemistry; 2015 Aug; 54(30):4652-64. PubMed ID: 26154836
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Rational reprogramming of the R2 subunit of Escherichia coli ribonucleotide reductase into a self-hydroxylating monooxygenase.
    Baldwin J; Voegtli WC; Khidekel N; Moënne-Loccoz P; Krebs C; Pereira AS; Ley BA; Huynh BH; Loehr TM; Riggs-Gelasco PJ; Rosenzweig AC; Bollinger JM
    J Am Chem Soc; 2001 Jul; 123(29):7017-30. PubMed ID: 11459480
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Substrate-Triggered μ-Peroxodiiron(III) Intermediate in the 4-Chloro-l-Lysine-Fragmenting Heme-Oxygenase-like Diiron Oxidase (HDO) BesC: Substrate Dissociation from, and C4 Targeting by, the Intermediate.
    McBride MJ; Nair MA; Sil D; Slater JW; Neugebauer ME; Chang MCY; Boal AK; Krebs C; Bollinger JM
    Biochemistry; 2022 Apr; 61(8):689-702. PubMed ID: 35380785
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Two-step concerted mechanism for methane hydroxylation on the diiron active site of soluble methane monooxygenase.
    Yoshizawa K
    J Inorg Biochem; 2000 Jan; 78(1):23-34. PubMed ID: 10714702
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mechanistic insights into a non-heme 2-oxoglutarate-dependent ethylene-forming enzyme: selectivity of ethylene-formation versusl-Arg hydroxylation.
    Xue J; Lu J; Lai W
    Phys Chem Chem Phys; 2019 May; 21(19):9957-9968. PubMed ID: 31041955
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Contrasting Mechanisms of Aromatic and Aryl-Methyl Substituent Hydroxylation by the Rieske Monooxygenase Salicylate 5-Hydroxylase.
    Rogers MS; Gordon AM; Rappe TM; Goodpaster JD; Lipscomb JD
    Biochemistry; 2023 Jan; 62(2):507-523. PubMed ID: 36583545
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A valence bond modeling of trends in hydrogen abstraction barriers and transition states of hydroxylation reactions catalyzed by cytochrome P450 enzymes.
    Shaik S; Kumar D; de Visser SP
    J Am Chem Soc; 2008 Aug; 130(31):10128-40. PubMed ID: 18616242
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An N-nitrosating metalloenzyme constructs the pharmacophore of streptozotocin.
    Ng TL; Rohac R; Mitchell AJ; Boal AK; Balskus EP
    Nature; 2019 Feb; 566(7742):94-99. PubMed ID: 30728519
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Methods for Biophysical Characterization of SznF, a Member of the Heme-Oxygenase-Like Diiron Oxidase/Oxygenase Superfamily.
    McBride MJ; Pope SR; Nair MA; Sil D; Salas-Solá XE; Krebs C; Martin Bollinger J; Boal AK
    Methods Mol Biol; 2023; 2648():123-154. PubMed ID: 37039989
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mechanism of benzene hydroxylation by high-valent bare Fe(IV)=O2+: explicit electronic structure analysis.
    Li JL; Zhang X; Huang XR
    Phys Chem Chem Phys; 2012 Jan; 14(1):246-56. PubMed ID: 22068928
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hydroxylation catalysis by mononuclear and dinuclear iron oxo catalysts: a methane monooxygenase model system versus the Fenton reagent Fe(IV)O(H2O)5(2+).
    Gopakumar G; Belanzoni P; Baerends EJ
    Inorg Chem; 2012 Jan; 51(1):63-75. PubMed ID: 22221279
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Models and mechanisms of O-O bond activation by cytochrome P450. A critical assessment of the potential role of multiple active intermediates in oxidative catalysis.
    Hlavica P
    Eur J Biochem; 2004 Nov; 271(22):4335-60. PubMed ID: 15560776
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Multiple mechanisms and multiple oxidants in P450-catalyzed hydroxylations.
    Newcomb M; Hollenberg PF; Coon MJ
    Arch Biochem Biophys; 2003 Jan; 409(1):72-9. PubMed ID: 12464246
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Beyond ferryl-mediated hydroxylation: 40 years of the rebound mechanism and C-H activation.
    Huang X; Groves JT
    J Biol Inorg Chem; 2017 Apr; 22(2-3):185-207. PubMed ID: 27909920
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mechanistic insights on the ortho-hydroxylation of aromatic compounds by non-heme iron complex: a computational case study on the comparative oxidative ability of ferric-hydroperoxo and high-valent Fe(IV)═O and Fe(V)═O intermediates.
    Ansari A; Kaushik A; Rajaraman G
    J Am Chem Soc; 2013 Mar; 135(11):4235-49. PubMed ID: 23373840
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.