BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 38212873)

  • 1. Algorithms for the Uniqueness of the Longest Common Subsequence.
    Wang Y
    J Bioinform Comput Biol; 2023 Dec; 21(6):2350027. PubMed ID: 38212873
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient Computation of Longest Common Subsequences with Multiple Substring Inclusive Constraints.
    Wang X; Wang L; Zhu D
    J Comput Biol; 2019 Sep; 26(9):938-947. PubMed ID: 30958704
    [No Abstract]   [Full Text] [Related]  

  • 3. Deposition and extension approach to find longest common subsequence for thousands of long sequences.
    Ning K
    Comput Biol Chem; 2010 Jun; 34(3):149-57. PubMed ID: 20570215
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exemplar longest common subsequence.
    Bonizzoni P; Della Vedova G; Dondi R; Fertin G; Rizzi R; Vialette S
    IEEE/ACM Trans Comput Biol Bioinform; 2007; 4(4):535-43. PubMed ID: 17975265
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Novel Efficient Graph Model for the Multiple Longest Common Subsequences (MLCS) Problem.
    Peng Z; Wang Y
    Front Genet; 2017; 8():104. PubMed ID: 28848600
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A path recorder algorithm for Multiple Longest Common Subsequences (MLCS) problems.
    Wei S; Wang Y; Yang Y; Liu S
    Bioinformatics; 2020 May; 36(10):3035-3042. PubMed ID: 32119070
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A fast and memory efficient MLCS algorithm by character merging for DNA sequences alignment.
    Liu S; Wang Y; Tong W; Wei S
    Bioinformatics; 2020 Feb; 36(4):1066-1073. PubMed ID: 31584616
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New Construction of Family of MLCS Algorithms.
    Shi H; Wang J
    J Healthc Eng; 2021; 2021():6636710. PubMed ID: 33542799
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new algorithm for "the LCS problem" with application in compressing genome resequencing data.
    Beal R; Afrin T; Farheen A; Adjeroh D
    BMC Genomics; 2016 Aug; 17 Suppl 4(Suppl 4):544. PubMed ID: 27556803
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A hyper-heuristic for the Longest Common Subsequence problem.
    Tabataba FS; Mousavi SR
    Comput Biol Chem; 2012 Feb; 36():42-54. PubMed ID: 22286085
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Longest common substring in Longest Common Subsequence's solution service: A novel hyper-heuristic.
    Abdi A; Hajsaeedi M; Hooshmand M
    Comput Biol Chem; 2023 Aug; 105():107882. PubMed ID: 37244077
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Space-Bounded Anytime Algorithm for the Multiple Longest Common Subsequence Problem.
    Yang J; Xu Y; Shang Y; Chen G
    IEEE Trans Knowl Data Eng; 2014 Nov; 26(11):2599-2609. PubMed ID: 25400485
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An OpenMP-based tool for finding longest common subsequence in bioinformatics.
    Shikder R; Thulasiraman P; Irani P; Hu P
    BMC Res Notes; 2019 Apr; 12(1):220. PubMed ID: 30971295
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Matching sequences under deletion-insertion constraints.
    Sankoff D
    Proc Natl Acad Sci U S A; 1972 Jan; 69(1):4-6. PubMed ID: 4500555
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel strategy to design highly specific PCR primers based on the stability and uniqueness of 3'-end subsequences.
    Miura F; Uematsu C; Sakaki Y; Ito T
    Bioinformatics; 2005 Dec; 21(24):4363-70. PubMed ID: 16234322
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CLAGen: a tool for clustering and annotating gene sequences using a suffix tree algorithm.
    Han Si; Lee SG; Kim KH; Choi CJ; Kim YH; Hwang KS
    Biosystems; 2006 Jun; 84(3):175-82. PubMed ID: 16384634
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CSA: an efficient algorithm to improve circular DNA multiple alignment.
    Fernandes F; Pereira L; Freitas AT
    BMC Bioinformatics; 2009 Jul; 10():230. PubMed ID: 19627599
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Non-similarity combinatorial problems.
    Rubinov AR; Timkovsky VG
    Biosystems; 1993; 30(1-3):81-92. PubMed ID: 8374083
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acceleration of sequence clustering using longest common subsequence filtering.
    Namiki Y; Ishida T; Akiyama Y
    BMC Bioinformatics; 2013; 14 Suppl 8(Suppl 8):S7. PubMed ID: 23815271
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Apache Spark Implementations for String Patterns in DNA Sequences.
    Kanavos A; Livieris I; Mylonas P; Sioutas S; Vonitsanos G
    Adv Exp Med Biol; 2020; 1194():439-453. PubMed ID: 32468560
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.