These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
8. Multistage microfluidic cell sorting method and chip based on size and stiffness. Li G; Ji Y; Wu Y; Liu Y; Li H; Wang Y; Chi M; Sun H; Zhu H Biosens Bioelectron; 2023 Oct; 237():115451. PubMed ID: 37327603 [TBL] [Abstract][Full Text] [Related]
9. A Cascaded Phase-Transfer Microfluidic Chip with Magnetic Probe for High-Activity Sorting, Purification, Release, and Detection of Circulating Tumor Cells. Nian M; Chen B; He M; Hu B Anal Chem; 2024 Jan; 96(2):766-774. PubMed ID: 38158582 [TBL] [Abstract][Full Text] [Related]
11. Microfluidics for cell sorting and single cell analysis from whole blood. Vaidyanathan R; Yeo T; Lim CT Methods Cell Biol; 2018; 147():151-173. PubMed ID: 30165956 [TBL] [Abstract][Full Text] [Related]
12. An integrated enrichment system to facilitate isolation and molecular characterization of single cancer cells from whole blood. Yu L; Sa S; Wang L; Dulmage K; Bhagwat N; Yee SS; Sen M; Pletcher CH; Moore JS; Saksena S; Dixon EP; Carpenter EL Cytometry A; 2018 Dec; 93(12):1226-1233. PubMed ID: 30549400 [TBL] [Abstract][Full Text] [Related]
13. Enhancing cell separation in a hybrid spiral dielectrophoretic microchannel: Numerical insights and optimal operating conditions. Uddin MR; Chen X Biotechnol Prog; 2024; 40(3):e3437. PubMed ID: 38289677 [TBL] [Abstract][Full Text] [Related]
14. Efficient separation of tumor cells from untreated whole blood using a novel multistage hydrodynamic focusing microfluidics. Gao R; Cheng L; Wang S; Bi X; Wang X; Wang R; Chen X; Zha Z; Wang F; Xu X; Zhao G; Yu L Talanta; 2020 Jan; 207():120261. PubMed ID: 31594567 [TBL] [Abstract][Full Text] [Related]
15. A low-cost and high-throughput benchtop cell sorter for isolating white blood cells from whole blood. Lu X; Tayebi M; Ai Y Electrophoresis; 2021 Nov; 42(21-22):2281-2292. PubMed ID: 34010478 [TBL] [Abstract][Full Text] [Related]
16. A hydrodynamic-based dual-function microfluidic chip for high throughput discriminating tumor cells. Wei YJ; Wei X; Zhang X; Wu CX; Cai JY; Chen ML; Wang JH Talanta; 2024 Jun; 273():125884. PubMed ID: 38508128 [TBL] [Abstract][Full Text] [Related]
17. Numerical study of dielectrophoresis-modified inertial migration for overlapping sized cell separation. Khan M; Chen X Electrophoresis; 2022 Apr; 43(7-8):879-891. PubMed ID: 35015306 [TBL] [Abstract][Full Text] [Related]
18. Label-free Separation of Circulating Tumor Cells Using a Self-Amplified Inertial Focusing (SAIF) Microfluidic Chip. Abdulla A; Zhang T; Ahmad KZ; Li S; Lou J; Ding X Anal Chem; 2020 Dec; 92(24):16170-16179. PubMed ID: 33232155 [TBL] [Abstract][Full Text] [Related]
19. High-Throughput Separation and Enrichment of Rare Malignant Tumor Cells from Large-Volume Effusions by Inertial Microfluidics. Ni C; Zhu Z; Zhou Z; Xiang N Methods Mol Biol; 2023; 2679():193-206. PubMed ID: 37300617 [TBL] [Abstract][Full Text] [Related]
20. Analytical Validation of a Spiral Microfluidic Chip with Hydrofoil-Shaped Pillars for the Enrichment of Circulating Tumor Cells. Sen-Dogan B; Demir MA; Sahin B; Yildirim E; Karayalcin G; Sahin S; Mutlu E; Toral TB; Ozgur E; Zorlu O; Kulah H Biosensors (Basel); 2023 Oct; 13(10):. PubMed ID: 37887131 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]