These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

313 related articles for article (PubMed ID: 38213028)

  • 61. Plant beneficial microbiome a boon for improving multiple stress tolerance in plants.
    Ali S; Tyagi A; Mir RA; Rather IA; Anwar Y; Mahmoudi H
    Front Plant Sci; 2023; 14():1266182. PubMed ID: 37767298
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Extension of Plant Phenotypes by the Foliar Microbiome.
    Hawkes CV; Kjøller R; Raaijmakers JM; Riber L; Christensen S; Rasmussen S; Christensen JH; Dahl AB; Westergaard JC; Nielsen M; Brown-Guedira G; Hestbjerg Hansen L
    Annu Rev Plant Biol; 2021 Jun; 72():823-846. PubMed ID: 34143648
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Genomics as a potential tool to unravel the rhizosphere microbiome interactions on plant health.
    Priya P; Aneesh B; Harikrishnan K
    J Microbiol Methods; 2021 Jun; 185():106215. PubMed ID: 33839214
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Host genetic variation drives the differentiation in the ecological role of the native Miscanthus root-associated microbiome.
    Ji N; Liang D; Clark LV; Sacks EJ; Kent AD
    Microbiome; 2023 Sep; 11(1):216. PubMed ID: 37777794
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Green revolution: impacts, limits, and the path ahead.
    Pingali PL
    Proc Natl Acad Sci U S A; 2012 Jul; 109(31):12302-8. PubMed ID: 22826253
    [TBL] [Abstract][Full Text] [Related]  

  • 66. The microbiome of cereal plants: The current state of knowledge and the potential for future applications.
    Michl K; Berg G; Cernava T
    Environ Microbiome; 2023 Mar; 18(1):28. PubMed ID: 37004087
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Host selection shapes crop microbiome assembly and network complexity.
    Xiong C; Zhu YG; Wang JT; Singh B; Han LL; Shen JP; Li PP; Wang GB; Wu CF; Ge AH; Zhang LM; He JZ
    New Phytol; 2021 Jan; 229(2):1091-1104. PubMed ID: 32852792
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Amelioration in traditional farming system by exploring the different plant growth-promoting attributes of endophytes for sustainable agriculture.
    Chouhan S; Agrawal L; Prakash A
    Arch Microbiol; 2022 Jan; 204(2):151. PubMed ID: 35075529
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Phyllosphere Community Assembly and Response to Drought Stress on Common Tropical and Temperate Forage Grasses.
    Bechtold EK; Ryan S; Moughan SE; Ranjan R; Nüsslein K
    Appl Environ Microbiol; 2021 Aug; 87(17):e0089521. PubMed ID: 34161142
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Customized plant microbiome engineering for food security.
    Batool M; Carvalhais LC; Fu B; Schenk PM
    Trends Plant Sci; 2024 Apr; 29(4):482-494. PubMed ID: 37977879
    [TBL] [Abstract][Full Text] [Related]  

  • 71. The role of plant-microbiome interactions in weed establishment and control.
    Trognitz F; Hackl E; Widhalm S; Sessitsch A
    FEMS Microbiol Ecol; 2016 Oct; 92(10):. PubMed ID: 27387910
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Marvels of Bacilli in soil amendment for plant-growth promotion toward sustainable development having futuristic socio-economic implications.
    Mukhopadhyay M; Mukherjee A; Ganguli S; Chakraborti A; Roy S; Choudhury SS; Subramaniyan V; Kumarasamy V; Sayed AA; El-Demerdash FM; Almutairi MH; Şuţan A; Dhara B; Mitra AK
    Front Microbiol; 2023; 14():1293302. PubMed ID: 38156003
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Microbiome engineering: Current applications and its future.
    Foo JL; Ling H; Lee YS; Chang MW
    Biotechnol J; 2017 Mar; 12(3):. PubMed ID: 28133942
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Plant-Microbiome Crosstalk: Dawning from Composition and Assembly of Microbial Community to Improvement of Disease Resilience in Plants.
    Noman M; Ahmed T; Ijaz U; Shahid M; Azizullah ; Li D; Manzoor I; Song F
    Int J Mol Sci; 2021 Jun; 22(13):. PubMed ID: 34202205
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Harnessing the plant microbiome to promote the growth of agricultural crops.
    Zhang J; Cook J; Nearing JT; Zhang J; Raudonis R; Glick BR; Langille MGI; Cheng Z
    Microbiol Res; 2021 Apr; 245():126690. PubMed ID: 33460987
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Functional soil microbiome: belowground solutions to an aboveground problem.
    Lakshmanan V; Selvaraj G; Bais HP
    Plant Physiol; 2014 Oct; 166(2):689-700. PubMed ID: 25059708
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Microbiome and the future for food and nutrient security.
    Singh BK; Trivedi P
    Microb Biotechnol; 2017 Jan; 10(1):50-53. PubMed ID: 28074557
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Research Advances of Beneficial Microbiota Associated with Crop Plants.
    Tian L; Lin X; Tian J; Ji L; Chen Y; Tran LP; Tian C
    Int J Mol Sci; 2020 Mar; 21(5):. PubMed ID: 32150945
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Root Niches of Blueberry Imprint Increasing Bacterial-Fungal Interkingdom Interactions along the Soil-Rhizosphere-Root Continuum.
    Che J; Wu Y; Yang H; Wang S; Wu W; Lyu L; Wang X; Li W
    Microbiol Spectr; 2023 Jun; 11(3):e0533322. PubMed ID: 37222589
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Agricultural management and plant selection interactively affect rhizosphere microbial community structure and nitrogen cycling.
    Schmidt JE; Kent AD; Brisson VL; Gaudin ACM
    Microbiome; 2019 Nov; 7(1):146. PubMed ID: 31699148
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.