These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 38213307)

  • 1. Chemical recycling of polyolefins
    Ibrahim T; Ritacco A; Nalley D; Emon OF; Liang Y; Sun H
    Chem Commun (Camb); 2024 Feb; 60(11):1361-1371. PubMed ID: 38213307
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Advances in the Synthesis of Chemically Recyclable Polymers.
    Li XL; Ma K; Xu F; Xu TQ
    Chem Asian J; 2023 Feb; 18(3):e202201167. PubMed ID: 36623942
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Depolymerizable Olefinic Polymers Based on Fused-Ring Cyclooctene Monomers.
    Sathe D; Zhou J; Chen H; Wang J
    J Vis Exp; 2022 Dec; (190):. PubMed ID: 36591980
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dual Recycling of Depolymerization Catalyst and Biodegradable Polyester that Markedly Outperforms Polyolefins.
    Li XL; Clarke RW; An HY; Gowda RR; Jiang JY; Xu TQ; Chen EY
    Angew Chem Int Ed Engl; 2023 Jun; 62(26):e202303791. PubMed ID: 37102633
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Closed-loop recyclable polymers: from monomer and polymer design to the polymerization-depolymerization cycle.
    Yang S; Du S; Zhu J; Ma S
    Chem Soc Rev; 2024 Sep; 53(19):9609-9651. PubMed ID: 39177226
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selectively Depolymerizable Polyurethanes from Unsaturated Polyols Cleavable by Olefin Metathesis.
    Jones BH; Staiger C; Powers J; Herman JA; Román-Kustas J
    Macromol Rapid Commun; 2021 Feb; 42(4):e2000571. PubMed ID: 33300207
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ring-Opening Polymerization of Cyclic Acetals: Strategy for both Recyclable and Degradable Materials.
    Shen T; Chen K; Chen Y; Ling J
    Macromol Rapid Commun; 2023 Jul; 44(13):e2300099. PubMed ID: 37020406
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tough while Recyclable Plastics Enabled by Monothiodilactone Monomers.
    Wang Y; Zhu Y; Lv W; Wang X; Tao Y
    J Am Chem Soc; 2023 Jan; 145(3):1877-1885. PubMed ID: 36594572
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Overcoming the Low Driving Force in Forming Depolymerizable Polymers through Monomer Isomerization.
    Chen H; Shi Z; Hsu TG; Wang J
    Angew Chem Int Ed Engl; 2021 Nov; 60(48):25493-25498. PubMed ID: 34499390
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemically Recyclable Ester-Linked Polypropylene.
    Kocen AL; Cui S; Lin TW; LaPointe AM; Coates GW
    J Am Chem Soc; 2022 Jul; 144(28):12613-12618. PubMed ID: 35793702
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Olefin metathesis-based chemically recyclable polymers enabled by fused-ring monomers.
    Sathe D; Zhou J; Chen H; Su HW; Xie W; Hsu TG; Schrage BR; Smith T; Ziegler CJ; Wang J
    Nat Chem; 2021 Aug; 13(8):743-750. PubMed ID: 34294914
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemically Recyclable Dithioacetal Polymers via Reversible Entropy-Driven Ring-Opening Polymerization.
    Kariyawasam LS; Highmoore JF; Yang Y
    Angew Chem Int Ed Engl; 2023 Jun; 62(26):e202303039. PubMed ID: 36988027
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Degradable polymers via olefin metathesis polymerization.
    Sun H; Liang Y; Thompson MP; Gianneschi NC
    Prog Polym Sci; 2021 Sep; 120():. PubMed ID: 38666185
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Degradable polyolefins prepared by integration of disulfides into metathesis polymerizations with 3,6-dihydro-1,2-dithiine.
    Seong HG; Russell TP; Emrick T
    Chem Sci; 2024 Sep; 15(41):17084-91. PubMed ID: 39345767
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Emerging Trends in Closed-Loop Recycling Polymers: Monomer Design and Catalytic Bulk Depolymerization.
    Liu Y; Lu XB
    Chemistry; 2023 Apr; 29(23):e202203635. PubMed ID: 36737871
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemically recyclable polyolefin-like multiblock polymers.
    Zhao Y; Rettner EM; Harry KL; Hu Z; Miscall J; Rorrer NA; Miyake GM
    Science; 2023 Oct; 382(6668):310-314. PubMed ID: 37856598
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biorenewable and circular polyolefin thermoplastic elastomers.
    Sha Y; Chen X; Sun W; Zhou J; He Y; Xu E; Luo Z; Zhou Y; Jia P
    Nat Commun; 2024 Oct; 15(1):8480. PubMed ID: 39353954
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Catalytic Chemical Recycling of Post-Consumer Polyethylene.
    Arroyave A; Cui S; Lopez JC; Kocen AL; LaPointe AM; Delferro M; Coates GW
    J Am Chem Soc; 2022 Dec; 144(51):23280-23285. PubMed ID: 36524740
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Catalytic Upcycling of Polyolefins.
    Sun J; Dong J; Gao L; Zhao YQ; Moon H; Scott SL
    Chem Rev; 2024 Aug; 124(16):9457-9579. PubMed ID: 39151127
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polyethylene Incorporating Diels-Alder Comonomers: A "Trojan Horse" Strategy for Chemically Recyclable Polyolefins.
    Parke SM; Lopez JC; Cui S; LaPointe AM; Coates GW
    Angew Chem Int Ed Engl; 2023 Jul; 62(30):e202301927. PubMed ID: 37160647
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.