BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 38213795)

  • 1. Proteome-Wide Fragment-Based Ligand and Target Discovery.
    Forrest I; Parker CG
    Isr J Chem; 2023 Mar; 63(3-4):. PubMed ID: 38213795
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reimagining Druggability Using Chemoproteomic Platforms.
    Spradlin JN; Zhang E; Nomura DK
    Acc Chem Res; 2021 Apr; 54(7):1801-1813. PubMed ID: 33733731
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ligand and Target Discovery by Fragment-Based Screening in Human Cells.
    Parker CG; Galmozzi A; Wang Y; Correia BE; Sasaki K; Joslyn CM; Kim AS; Cavallaro CL; Lawrence RM; Johnson SR; Narvaiza I; Saez E; Cravatt BF
    Cell; 2017 Jan; 168(3):527-541.e29. PubMed ID: 28111073
    [TBL] [Abstract][Full Text] [Related]  

  • 4. NHS-Esters As Versatile Reactivity-Based Probes for Mapping Proteome-Wide Ligandable Hotspots.
    Ward CC; Kleinman JI; Nomura DK
    ACS Chem Biol; 2017 Jun; 12(6):1478-1483. PubMed ID: 28445029
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expedited mapping of the ligandable proteome using fully functionalized enantiomeric probe pairs.
    Wang Y; Dix MM; Bianco G; Remsberg JR; Lee HY; Kalocsay M; Gygi SP; Forli S; Vite G; Lawrence RM; Parker CG; Cravatt BF
    Nat Chem; 2019 Dec; 11(12):1113-1123. PubMed ID: 31659311
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct mapping of ligandable tyrosines and lysines in cells with chiral sulfonyl fluoride probes.
    Chen Y; Craven GB; Kamber RA; Cuesta A; Zhersh S; Moroz YS; Bassik MC; Taunton J
    Nat Chem; 2023 Nov; 15(11):1616-1625. PubMed ID: 37460812
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Advances in applications of activity-based chemical probes in the characterization of amino acid reactivities].
    Li J; Wang G; Ye M; Qin H
    Se Pu; 2023 Jan; 41(1):14-23. PubMed ID: 36633073
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemoproteomic profiling of kinases in live cells using electrophilic sulfonyl triazole probes.
    Huang T; Hosseinibarkooie S; Borne AL; Granade ME; Brulet JW; Harris TE; Ferris HA; Hsu KL
    Chem Sci; 2021 Jan; 12(9):3295-3307. PubMed ID: 34164099
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemoproteomic-enabled phenotypic screening.
    Conway LP; Li W; Parker CG
    Cell Chem Biol; 2021 Mar; 28(3):371-393. PubMed ID: 33577749
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proteome-wide covalent ligand discovery in native biological systems.
    Backus KM; Correia BE; Lum KM; Forli S; Horning BD; González-Páez GE; Chatterjee S; Lanning BR; Teijaro JR; Olson AJ; Wolan DW; Cravatt BF
    Nature; 2016 Jun; 534(7608):570-4. PubMed ID: 27309814
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fragment-based covalent ligand discovery.
    Lu W; Kostic M; Zhang T; Che J; Patricelli MP; Jones LH; Chouchani ET; Gray NS
    RSC Chem Biol; 2021 Apr; 2(2):354-367. PubMed ID: 34458789
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lysine-Targeted Inhibitors and Chemoproteomic Probes.
    Cuesta A; Taunton J
    Annu Rev Biochem; 2019 Jun; 88():365-381. PubMed ID: 30633551
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mapping the Evolution of Activity-Based Protein Profiling: A Bibliometric Review.
    Porta EOJ
    Adv Pharm Bull; 2023 Nov; 13(4):639-645. PubMed ID: 38022804
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemoproteomic Approaches to Studying RNA Modification-Associated Proteins.
    Dai W; Yu NJ; Kleiner RE
    Acc Chem Res; 2023 Oct; 56(19):2726-2739. PubMed ID: 37733063
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diverse Redoxome Reactivity Profiles of Carbon Nucleophiles.
    Gupta V; Yang J; Liebler DC; Carroll KS
    J Am Chem Soc; 2017 Apr; 139(15):5588-5595. PubMed ID: 28355876
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Activity-based protein profiling: applications to biomarker discovery, in vivo imaging and drug discovery.
    Berger AB; Vitorino PM; Bogyo M
    Am J Pharmacogenomics; 2004; 4(6):371-81. PubMed ID: 15651898
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Activity-based protein profiling for mapping and pharmacologically interrogating proteome-wide ligandable hotspots.
    Roberts AM; Ward CC; Nomura DK
    Curr Opin Biotechnol; 2017 Feb; 43():25-33. PubMed ID: 27568596
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemoproteomics and Chemical Probes for Target Discovery.
    Drewes G; Knapp S
    Trends Biotechnol; 2018 Dec; 36(12):1275-1286. PubMed ID: 30017093
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiplexed proteomic profiling of cysteine reactivity and ligandability in human T cells.
    Vinogradova EV; Cravatt BF
    STAR Protoc; 2021 Jun; 2(2):100458. PubMed ID: 33899026
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Applications of Reactive Cysteine Profiling.
    Backus KM
    Curr Top Microbiol Immunol; 2019; 420():375-417. PubMed ID: 30105421
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.