These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 38213821)
1. PaintorPipe: a pipeline for genetic variant fine-mapping using functional annotations. Gerber Z; Fisun M; Aschard H; Djebali S Bioinform Adv; 2024; 4(1):vbad188. PubMed ID: 38213821 [TBL] [Abstract][Full Text] [Related]
2. SparsePro: An efficient fine-mapping method integrating summary statistics and functional annotations. Zhang W; Najafabadi H; Li Y PLoS Genet; 2023 Dec; 19(12):e1011104. PubMed ID: 38153934 [TBL] [Abstract][Full Text] [Related]
3. Improved methods for multi-trait fine mapping of pleiotropic risk loci. Kichaev G; Roytman M; Johnson R; Eskin E; Lindström S; Kraft P; Pasaniuc B Bioinformatics; 2017 Jan; 33(2):248-255. PubMed ID: 27663501 [TBL] [Abstract][Full Text] [Related]
4. Identification of potential genetic causal variants for obesity-related traits using statistical fine mapping. Gong R; Greenbaum J; Lin X; Du Y; Su KJ; Gong Y; Shen J; Deng HW Mol Genet Genomics; 2023 Nov; 298(6):1309-1319. PubMed ID: 37498361 [TBL] [Abstract][Full Text] [Related]
5. A fine-mapping study of central obesity loci incorporating functional annotation and imputation. Zhang X; Cupples LA; Liu CT Eur J Hum Genet; 2018 Sep; 26(9):1369-1377. PubMed ID: 29967334 [TBL] [Abstract][Full Text] [Related]
6. echolocatoR: an automated end-to-end statistical and functional genomic fine-mapping pipeline. Schilder BM; Humphrey J; Raj T Bioinformatics; 2022 Jan; 38(2):536-539. PubMed ID: 34529038 [TBL] [Abstract][Full Text] [Related]
7. Incorporating Functional Annotations for Fine-Mapping Causal Variants in a Bayesian Framework Using Summary Statistics. Chen W; McDonnell SK; Thibodeau SN; Tillmans LS; Schaid DJ Genetics; 2016 Nov; 204(3):933-958. PubMed ID: 27655946 [TBL] [Abstract][Full Text] [Related]
8. Genetic fine-mapping from summary data using a nonlocal prior improves the detection of multiple causal variants. Karhunen V; Launonen I; Järvelin MR; Sebert S; Sillanpää MJ Bioinformatics; 2023 Jul; 39(7):. PubMed ID: 37348543 [TBL] [Abstract][Full Text] [Related]
9. Improving the coverage of credible sets in Bayesian genetic fine-mapping. Hutchinson A; Watson H; Wallace C PLoS Comput Biol; 2020 Apr; 16(4):e1007829. PubMed ID: 32282791 [TBL] [Abstract][Full Text] [Related]
10. CAUSALdb: a database for disease/trait causal variants identified using summary statistics of genome-wide association studies. Wang J; Huang D; Zhou Y; Yao H; Liu H; Zhai S; Wu C; Zheng Z; Zhao K; Wang Z; Yi X; Zhang S; Liu X; Liu Z; Chen K; Yu Y; Sham PC; Li MJ Nucleic Acids Res; 2020 Jan; 48(D1):D807-D816. PubMed ID: 31691819 [TBL] [Abstract][Full Text] [Related]
11. Hierarchical joint analysis of marginal summary statistics-Part I: Multipopulation fine mapping and credible set construction. Shen J; Jiang L; Wang K; Wang A; Chen F; Newcombe PJ; Haiman CA; Conti DV Genet Epidemiol; 2024 Sep; 48(6):241-257. PubMed ID: 38606643 [TBL] [Abstract][Full Text] [Related]
12. A statistical approach to fine-mapping for the identification of potential causal variants related to human intelligence. Gong Y; Greenbaum J; Deng HW J Hum Genet; 2019 Aug; 64(8):781-787. PubMed ID: 31165785 [TBL] [Abstract][Full Text] [Related]
13. A Statistical Approach to Fine Mapping for the Identification of Potential Causal Variants Related to Bone Mineral Density. Greenbaum J; Deng HW J Bone Miner Res; 2017 Aug; 32(8):1651-1658. PubMed ID: 28425624 [TBL] [Abstract][Full Text] [Related]
14. Fine-mapping a genome-wide meta-analysis of 98,374 migraine cases identifies 181 sets of candidate causal variants. Hautakangas H; ; ; ; Palotie A; Pirinen M medRxiv; 2024 May; ():. PubMed ID: 39371129 [TBL] [Abstract][Full Text] [Related]
15. BEATRICE: Bayesian fine-mapping from summary data using deep variational inference. Ghosal S; Schatz MC; Venkataraman A Bioinformatics; 2024 Oct; 40(10):. PubMed ID: 39360993 [TBL] [Abstract][Full Text] [Related]
16. LD-annot: A Bioinformatics Tool to Automatically Provide Candidate SNPs With Annotations for Genetically Linked Genes. Prunier J; Lemaçon A; Bastien A; Jafarikia M; Porth I; Robert C; Droit A Front Genet; 2019; 10():1192. PubMed ID: 31850063 [TBL] [Abstract][Full Text] [Related]
17. KidneyGPS: a user-friendly web application to help prioritize kidney function genes and variants based on evidence from genome-wide association studies. Stanzick KJ; Stark KJ; Gorski M; Schödel J; Krüger R; Kronenberg F; Warth R; Heid IM; Winkler TW BMC Bioinformatics; 2023 Sep; 24(1):355. PubMed ID: 37735349 [TBL] [Abstract][Full Text] [Related]
18. Weighting sequence variants based on their annotation increases the power of genome-wide association studies in dairy cattle. Cai Z; Guldbrandtsen B; Lund MS; Sahana G Genet Sel Evol; 2019 May; 51(1):20. PubMed ID: 31077144 [TBL] [Abstract][Full Text] [Related]
19. CARMA is a new Bayesian model for fine-mapping in genome-wide association meta-analyses. Yang Z; Wang C; Liu L; Khan A; Lee A; Vardarajan B; Mayeux R; Kiryluk K; Ionita-Laza I Nat Genet; 2023 Jun; 55(6):1057-1065. PubMed ID: 37169873 [TBL] [Abstract][Full Text] [Related]
20. Fine-mapping across diverse ancestries drives the discovery of putative causal variants underlying human complex traits and diseases. Yuan K; Longchamps RJ; Pardiñas AF; Yu M; Chen TT; Lin SC; Chen Y; Lam M; Liu R; Xia Y; Guo Z; Shi W; Shen C; ; Daly MJ; Neale BM; Feng YA; Lin YF; Chen CY; O'Donovan M; Ge T; Huang H medRxiv; 2023 Jul; ():. PubMed ID: 36711496 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]