These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 38213821)

  • 21. A scalable Bayesian functional GWAS method accounting for multivariate quantitative functional annotations with applications for studying Alzheimer disease.
    Chen J; Wang L; De Jager PL; Bennett DA; Buchman AS; Yang J
    HGG Adv; 2022 Oct; 3(4):100143. PubMed ID: 36204489
    [TBL] [Abstract][Full Text] [Related]  

  • 22. SCAN: SNP and copy number annotation.
    Gamazon ER; Zhang W; Konkashbaev A; Duan S; Kistner EO; Nicolae DL; Dolan ME; Cox NJ
    Bioinformatics; 2010 Jan; 26(2):259-62. PubMed ID: 19933162
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fine Mapping Causal Variants with an Approximate Bayesian Method Using Marginal Test Statistics.
    Chen W; Larrabee BR; Ovsyannikova IG; Kennedy RB; Haralambieva IH; Poland GA; Schaid DJ
    Genetics; 2015 Jul; 200(3):719-36. PubMed ID: 25948564
    [TBL] [Abstract][Full Text] [Related]  

  • 24. iFunMed: Integrative functional mediation analysis of GWAS and eQTL studies.
    Rojo C; Zhang Q; Keleş S
    Genet Epidemiol; 2019 Oct; 43(7):742-760. PubMed ID: 31328826
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Joint Bayesian inference of risk variants and tissue-specific epigenomic enrichments across multiple complex human diseases.
    Li Y; Kellis M
    Nucleic Acids Res; 2016 Oct; 44(18):e144. PubMed ID: 27407109
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Trans-ethnic follow-up of breast cancer GWAS hits using the preferential linkage disequilibrium approach.
    Zhu Q; Shepherd L; Lunetta KL; Yao S; Liu Q; Hu Q; Haddad SA; Sucheston-Campbell L; Bensen JT; Bandera EV; Rosenberg L; Liu S; Haiman CA; Olshan AF; Palmer JR; Ambrosone CB
    Oncotarget; 2016 Dec; 7(50):83160-83176. PubMed ID: 27825120
    [TBL] [Abstract][Full Text] [Related]  

  • 27. PALM: a powerful and adaptive latent model for prioritizing risk variants with functional annotations.
    Yu X; Xiao J; Cai M; Jiao Y; Wan X; Liu J; Yang C
    Bioinformatics; 2023 Feb; 39(2):. PubMed ID: 36744920
    [TBL] [Abstract][Full Text] [Related]  

  • 28. From GWAS to Gene: Transcriptome-Wide Association Studies and Other Methods to Functionally Understand GWAS Discoveries.
    Li B; Ritchie MD
    Front Genet; 2021; 12():713230. PubMed ID: 34659337
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Strategies for fine-mapping complex traits.
    Spain SL; Barrett JC
    Hum Mol Genet; 2015 Oct; 24(R1):R111-9. PubMed ID: 26157023
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Identifying candidate causal variants via trans-population fine-mapping.
    Teo YY; Ong RT; Sim X; Tai ES; Chia KS
    Genet Epidemiol; 2010 Nov; 34(7):653-64. PubMed ID: 20839287
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Estimating colocalization probability from limited summary statistics.
    King EA; Dunbar F; Davis JW; Degner JF
    BMC Bioinformatics; 2021 May; 22(1):254. PubMed ID: 34000989
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A Multi-omic Integrative Scheme Characterizes Tissues of Action at Loci Associated with Type 2 Diabetes.
    Torres JM; Abdalla M; Payne A; Fernandez-Tajes J; Thurner M; Nylander V; Gloyn AL; Mahajan A; McCarthy MI
    Am J Hum Genet; 2020 Dec; 107(6):1011-1028. PubMed ID: 33186544
    [TBL] [Abstract][Full Text] [Related]  

  • 33. SNPAAMapper-Python: A highly efficient genome-wide SNP variant analysis pipeline for Next-Generation Sequencing data.
    Li C; Ma K; Xu N; Fu C; He A; Liu X; Bai Y
    Front Artif Intell; 2022; 5():991733. PubMed ID: 36171799
    [TBL] [Abstract][Full Text] [Related]  

  • 34. ANNORE: genetic fine-mapping with functional annotation.
    Fisher V; Sebastiani P; Cupples LA; Liu CT
    Hum Mol Genet; 2021 Dec; 31(1):32-40. PubMed ID: 34302344
    [TBL] [Abstract][Full Text] [Related]  

  • 35. LSMM: a statistical approach to integrating functional annotations with genome-wide association studies.
    Ming J; Dai M; Cai M; Wan X; Liu J; Yang C
    Bioinformatics; 2018 Aug; 34(16):2788-2796. PubMed ID: 29608640
    [TBL] [Abstract][Full Text] [Related]  

  • 36. DeepPerVar: a multi-modal deep learning framework for functional interpretation of genetic variants in personal genome.
    Wang Y; Chen L
    Bioinformatics; 2022 Dec; 38(24):5340-5351. PubMed ID: 36271868
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Quantifying the mapping precision of genome-wide association studies using whole-genome sequencing data.
    Wu Y; Zheng Z; Visscher PM; Yang J
    Genome Biol; 2017 May; 18(1):86. PubMed ID: 28506277
    [TBL] [Abstract][Full Text] [Related]  

  • 38. PICS2: next-generation fine mapping via probabilistic identification of causal SNPs.
    Taylor KE; Ansel KM; Marson A; Criswell LA; Farh KK
    Bioinformatics; 2021 Sep; 37(18):3004-3007. PubMed ID: 33624747
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Beyond guilty by association at scale: searching for causal variants on the basis of genome-wide summary statistics.
    He Z; Chu B; Yang J; Gu J; Chen Z; Liu L; Morrison T; Belloy ME; Qi X; Hejazi N; Mathur M; Le Guen Y; Tang H; Hastie T; Ionita-Laza I; Sabatti C; Candès E
    bioRxiv; 2024 May; ():. PubMed ID: 38464202
    [TBL] [Abstract][Full Text] [Related]  

  • 40. CandiSNPer: a web tool for the identification of candidate SNPs for causal variants.
    Schmitt AO; Assmus J; Bortfeldt RH; Brockmann GA
    Bioinformatics; 2010 Apr; 26(7):969-70. PubMed ID: 20172942
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.