These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 38214386)

  • 1. Increase in the effective viscosity of polyethylene under extreme nanoconfinement.
    Ren T; Hinton ZR; Huang R; Epps TH; Korley L; Gorte RJ; Lee D
    J Chem Phys; 2024 Jan; 160(2):. PubMed ID: 38214386
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of polymer-nanoparticle interactions on the viscosity of unentangled polymers under extreme nanoconfinement during capillary rise infiltration.
    Hor JL; Wang H; Fakhraai Z; Lee D
    Soft Matter; 2018 Mar; 14(13):2438-2446. PubMed ID: 29442118
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dramatic Increase in Polymer Glass Transition Temperature under Extreme Nanoconfinement in Weakly Interacting Nanoparticle Films.
    Wang H; Hor JL; Zhang Y; Liu T; Lee D; Fakhraai Z
    ACS Nano; 2018 Jun; 12(6):5580-5587. PubMed ID: 29792676
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Capillary filling dynamics of polymer melts in a bicontinuous nanoporous scaffold.
    Kong W; Neuman A; Zhang AC; Lee D; Riggleman RA; Composto RJ
    J Chem Phys; 2024 Jan; 160(4):. PubMed ID: 38270239
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polymer nanocomposite films with extremely high nanoparticle loadings via capillary rise infiltration (CaRI).
    Huang YR; Jiang Y; Hor JL; Gupta R; Zhang L; Stebe KJ; Feng G; Turner KT; Lee D
    Nanoscale; 2015 Jan; 7(2):798-805. PubMed ID: 25436973
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermal Degradation of Polystyrene under Extreme Nanoconfinement.
    Wang H; Qiang Y; Shamsabadi AA; Mazumder P; Turner KT; Lee D; Fakhraai Z
    ACS Macro Lett; 2019 Nov; 8(11):1413-1418. PubMed ID: 35651194
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The dynamics of unentangled polymers during capillary rise infiltration into a nanoparticle packing.
    Shavit A; Riggleman RA
    Soft Matter; 2015 Nov; 11(42):8285-95. PubMed ID: 26355281
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polymer-Infiltrated Nanoparticle Films Using Capillarity-Based Techniques: Toward Multifunctional Coatings and Membranes.
    Venkatesh RB; Manohar N; Qiang Y; Wang H; Tran HH; Kim BQ; Neuman A; Ren T; Fakhraai Z; Riggleman RA; Stebe KJ; Turner K; Lee D
    Annu Rev Chem Biomol Eng; 2021 Jun; 12():411-437. PubMed ID: 34097843
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Theory on Capillary Filling of Polymer Melts in Nanopores.
    Yao Y; Butt HJ; Floudas G; Zhou J; Doi M
    Macromol Rapid Commun; 2018 Jul; 39(14):e1800087. PubMed ID: 29687518
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anomalous Capillary Rise under Nanoconfinement: A View of Molecular Kinetic Theory.
    Feng D; Li X; Wang X; Li J; Zhang T; Sun Z; He M; Liu Q; Qin J; Han S; Hu J
    Langmuir; 2018 Jul; 34(26):7714-7725. PubMed ID: 29889541
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermodynamic and Kinetic Transitions of Liquids in Nanoconfinement.
    Sen S; Risbud SH; Bartl MH
    Acc Chem Res; 2020 Dec; 53(12):2869-2878. PubMed ID: 33186005
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Capillary rise of water in hydrophilic nanopores.
    Gruener S; Hofmann T; Wallacher D; Kityk AV; Huber P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jun; 79(6 Pt 2):067301. PubMed ID: 19658631
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oriented crystallization of PEG induced by confinement in cylindrical nanopores: structural and thermal properties.
    Grefe AK; Kuttich B; Stühn L; Stark R; Stühn B
    Soft Matter; 2019 Apr; 15(15):3149-3159. PubMed ID: 30860542
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of Nanoscale Confinement on Polymer-Infiltrated Scaffold Metal Composites.
    Maguire SM; Bilchak CR; Corsi JS; Welborn SS; Tsaggaris T; Ford J; Detsi E; Fakhraai Z; Composto RJ
    ACS Appl Mater Interfaces; 2021 Sep; 13(37):44893-44903. PubMed ID: 34494810
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polymer solution structure and dynamics within pores of hexagonally close-packed nanoparticles.
    Heil CM; Jayaraman A
    Soft Matter; 2022 Nov; 18(42):8175-8187. PubMed ID: 36263835
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interfacial Conductivity Enhancement and Pore Confinement Conductivity-Lowering Behavior inside the Nanopores of Solid Silica-gel Nanocomposite Electrolytes.
    Sagara A; Yabe H; Chen X; Put B; Hantschel T; Mees M; Arase H; Kaneko Y; Uedono A; Vereecken PM
    ACS Appl Mater Interfaces; 2021 Sep; 13(34):40543-40551. PubMed ID: 34403249
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Programming Ionic Pore Accessibility in Zwitterionic Polymer Modified Nanopores.
    Silies L; Andrieu-Brunsen A
    Langmuir; 2018 Jan; 34(3):807-816. PubMed ID: 28535052
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface-modified silica colloidal crystals: nanoporous films and membranes with controlled ionic and molecular transport.
    Zharov I; Khabibullin A
    Acc Chem Res; 2014 Feb; 47(2):440-9. PubMed ID: 24397245
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Toughening Nanoparticle Films via Polymer Infiltration and Confinement.
    Jiang Y; Hor JL; Lee D; Turner KT
    ACS Appl Mater Interfaces; 2018 Dec; 10(50):44011-44017. PubMed ID: 30520630
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.