These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 38214434)

  • 1. A Delicate Balance Between Spin-Wave Mediated Weak Localization and Electron-Phonon Scattering in the Design of Zero Temperature Coefficient of Resistivity.
    Yuan X; Sun Y; Guo H; Du Y; Shi K; Hao W; Wang C
    Small; 2024 Jun; 20(23):e2311599. PubMed ID: 38214434
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phonon-limited transport coefficients in extrinsic graphene.
    Muñoz E
    J Phys Condens Matter; 2012 May; 24(19):195302. PubMed ID: 22517027
    [TBL] [Abstract][Full Text] [Related]  

  • 3. T-Square Dependence of the Electronic Thermal Resistivity of Metallic Strontium Titanate.
    Jiang S; Fauqué B; Behnia K
    Phys Rev Lett; 2023 Jul; 131(1):016301. PubMed ID: 37478431
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electron-electron scattering limits thermal conductivity of metals under extremely high electron temperatures.
    Karna P; Giri A
    J Phys Condens Matter; 2024 May; 36(34):. PubMed ID: 38740071
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Balancing Scattering Channels: A Panoscopic Approach toward Zero Temperature Coefficient of Resistance Using High-Entropy Alloys.
    Shafeie S; Guo S; Erhart P; Hu Q; Palmqvist A
    Adv Mater; 2019 Jan; 31(2):e1805392. PubMed ID: 30407664
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Linear-in temperature resistivity from an isotropic Planckian scattering rate.
    Grissonnanche G; Fang Y; Legros A; Verret S; Laliberté F; Collignon C; Zhou J; Graf D; Goddard PA; Taillefer L; Ramshaw BJ
    Nature; 2021 Jul; 595(7869):667-672. PubMed ID: 34321673
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electron-phonon interactions and the intrinsic electrical resistivity of graphene.
    Park CH; Bonini N; Sohier T; Samsonidze G; Kozinsky B; Calandra M; Mauri F; Marzari N
    Nano Lett; 2014 Mar; 14(3):1113-9. PubMed ID: 24524418
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temperature dependence of electrical and thermal conduction in single silver nanowire.
    Cheng Z; Liu L; Xu S; Lu M; Wang X
    Sci Rep; 2015 Jun; 5():10718. PubMed ID: 26035288
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermal conductivity and electrical resistivity of single copper nanowires.
    Peng WT; Chen FR; Lu MC
    Phys Chem Chem Phys; 2021 Sep; 23(36):20359-20364. PubMed ID: 34490856
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence of weak Anderson localization revealed by the resistivity, transverse magnetoresistance and Hall effect measured on thin Cu films deposited on mica.
    Díaz E; Herrera G; Oyarzún S; Munoz RC
    Sci Rep; 2021 Sep; 11(1):17820. PubMed ID: 34497283
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acoustic phonon-limited resistivity of spin-orbit coupled two-dimensional electron gas: the deformation potential and piezoelectric scattering.
    Biswas T; Ghosh TK
    J Phys Condens Matter; 2013 Jan; 25(3):035301. PubMed ID: 23221021
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generalized Elliott-Yafet theory of electron spin relaxation in metals: origin of the anomalous electron spin lifetime in MgB2.
    Simon F; Dóra B; Murányi F; Jánossy A; Garaj S; Forró L; Bud'ko S; Petrovic C; Canfield PC
    Phys Rev Lett; 2008 Oct; 101(17):177003. PubMed ID: 18999776
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Resistivity bound for hydrodynamic bad metals.
    Lucas A; Hartnoll SA
    Proc Natl Acad Sci U S A; 2017 Oct; 114(43):11344-11349. PubMed ID: 29073054
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Understanding the resistivity and absolute thermoelectric power of disordered metals and alloys.
    Gasser JG
    J Phys Condens Matter; 2008 Mar; 20(11):114103. PubMed ID: 21694196
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Four-Phonon Scattering Effect and Two-Channel Thermal Transport in Two-Dimensional Paraelectric SnSe.
    Sun J; Zhang C; Yang Z; Shen Y; Hu M; Wang Q
    ACS Appl Mater Interfaces; 2022 Mar; 14(9):11493-11499. PubMed ID: 35191673
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrical resistivity across a nematic quantum critical point.
    Licciardello S; Buhot J; Lu J; Ayres J; Kasahara S; Matsuda Y; Shibauchi T; Hussey NE
    Nature; 2019 Mar; 567(7747):213-217. PubMed ID: 30760921
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence of a coupled electron-phonon liquid in NbGe
    Yang HY; Yao X; Plisson V; Mozaffari S; Scheifers JP; Savvidou AF; Choi ES; McCandless GT; Padlewski MF; Putzke C; Moll PJW; Chan JY; Balicas L; Burch KS; Tafti F
    Nat Commun; 2021 Sep; 12(1):5292. PubMed ID: 34489411
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Magnetoresistance in Sn-Doped In2O3Nanowires.
    Berengue OM; Lanfredi A; Pozzi LP; Rey J; Leite ER; Chiquito AJ
    Nanoscale Res Lett; 2009 Jul; 4(8):921-5. PubMed ID: 20596280
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermal Conductivity of Ultrahigh Molecular Weight Polyethylene Crystal: Defect Effect Uncovered by 0 K Limit Phonon Diffusion.
    Liu J; Xu Z; Cheng Z; Xu S; Wang X
    ACS Appl Mater Interfaces; 2015 Dec; 7(49):27279-88. PubMed ID: 26593380
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Scaling analysis of anomalous Hall resistivity in the Co
    Jena RP; Kumar D; Lakhani A
    J Phys Condens Matter; 2020 Jun; 32(36):. PubMed ID: 32369785
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.