BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 38214441)

  • 1. Preparation of green high-performance biomass-derived hard carbon materials from bamboo powder waste.
    Yin T; Zhang Z; Xu L; Li C; Han D
    ChemistryOpen; 2024 May; 13(5):e202300178. PubMed ID: 38214441
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High Capacity and High Efficiency Maple Tree-Biomass-Derived Hard Carbon as an Anode Material for Sodium-Ion Batteries.
    Wang Y; Feng Z; Zhu W; Gariépy V; Gagnon C; Provencher M; Laul D; Veillette R; Trudeau ML; Guerfi A; Zaghib K
    Materials (Basel); 2018 Jul; 11(8):. PubMed ID: 30050008
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrothermally Assisted Conversion of Switchgrass into Hard Carbon as Anode Materials for Sodium-Ion Batteries.
    Li Y; Xia D; Tao L; Xu Z; Yu D; Jin Q; Lin F; Huang H
    ACS Appl Mater Interfaces; 2024 Jun; 16(22):28461-28472. PubMed ID: 38780280
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coupled Carbonization Strategy toward Advanced Hard Carbon for High-Energy Sodium-Ion Battery.
    Zhang H; Ming H; Zhang W; Cao G; Yang Y
    ACS Appl Mater Interfaces; 2017 Jul; 9(28):23766-23774. PubMed ID: 28650143
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pre-Oxidation Strategy Transforming Waste Foam to Hard Carbon Anodes for Boosting Sodium Storage Performance.
    Chen Y; Sun H; He XX; Chen Q; Zhao JH; Wei Y; Wu X; Zhang Z; Jiang Y; Chou SL
    Small; 2024 Mar; 20(12):e2307132. PubMed ID: 37946700
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Waste biomass garlic stem-derived porous carbon materials as high-capacity and long-cycling anode for lithium/sodium-ion batteries.
    Shen G; Li B; Xu Y; Chen X; Katiyar S; Zhu L; Xie L; Han Q; Qiu X; Wu X; Cao X
    J Colloid Interface Sci; 2024 Jan; 653(Pt B):1588-1599. PubMed ID: 37812836
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lotus Seedpod-Derived Hard Carbon with Hierarchical Porous Structure as Stable Anode for Sodium-Ion Batteries.
    Wu F; Zhang M; Bai Y; Wang X; Dong R; Wu C
    ACS Appl Mater Interfaces; 2019 Apr; 11(13):12554-12561. PubMed ID: 30875192
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hard carbon originated from polyvinyl chloride nanofibers as high-performance anode material for Na-ion battery.
    Bai Y; Wang Z; Wu C; Xu R; Wu F; Liu Y; Li H; Li Y; Lu J; Amine K
    ACS Appl Mater Interfaces; 2015 Mar; 7(9):5598-604. PubMed ID: 25692826
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Invasive alien plant biomass-derived hard carbon anode for sodium-ion batteries.
    Wei H; Cheng H; Yao N; Li G; Du Z; Luo R; Zheng Z
    Chemosphere; 2023 Dec; 343():140220. PubMed ID: 37739130
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of Hydrothermal Carbonization to Improve the Performance of Biowaste-Derived Hard Carbons in Sodium Ion-Batteries.
    Nieto N; Porte J; Saurel D; Djuandhi L; Sharma N; Lopez-Urionabarrenechea A; Palomares V; Rojo T
    ChemSusChem; 2023 Dec; 16(23):e202301053. PubMed ID: 37532675
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomass-Derived Hard Carbon for Sodium-Ion Batteries: Basic Research and Industrial Application.
    Zhong B; Liu C; Xiong D; Cai J; Li J; Li D; Cao Z; Song B; Deng W; Peng H; Hou H; Zou G; Ji X
    ACS Nano; 2024 Jul; 18(26):16468-16488. PubMed ID: 38900494
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High Temperature Carbonized Grass as a High Performance Sodium Ion Battery Anode.
    Zhang F; Yao Y; Wan J; Henderson D; Zhang X; Hu L
    ACS Appl Mater Interfaces; 2017 Jan; 9(1):391-397. PubMed ID: 28034316
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hard carbon micro-nano tubes derived from kapok fiber as anode materials for sodium-ion batteries and the sodium-ion storage mechanism.
    Yu ZE; Lyu Y; Wang Y; Xu S; Cheng H; Mu X; Chu J; Chen R; Liu Y; Guo B
    Chem Commun (Camb); 2020 Jan; 56(5):778-781. PubMed ID: 31845678
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-Performance Sodium-Ion Battery Anode via Rapid Microwave Carbonization of Natural Cellulose Nanofibers with Graphene Initiator.
    Shi Q; Liu D; Wang Y; Zhao Y; Yang X; Huang J
    Small; 2019 Oct; 15(41):e1901724. PubMed ID: 31460708
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomass-Derived Hard Carbon with Interlayer Spacing Optimization toward Ultrastable Na-Ion Storage.
    Hou Z; Lei D; Jiang M; Gao Y; Zhang X; Zhang Y; Wang JG
    ACS Appl Mater Interfaces; 2023 Jan; 15(1):1367-1375. PubMed ID: 36576060
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemically Crushed Wood Cellulose Fiber towards High-Performance Sodium-Ion Batteries.
    Shen F; Zhu H; Luo W; Wan J; Zhou L; Dai J; Zhao B; Han X; Fu K; Hu L
    ACS Appl Mater Interfaces; 2015 Oct; 7(41):23291-6. PubMed ID: 26437023
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent progress on hard carbon and other anode materials for sodium-ion batteries.
    Shafiee FN; Mohd Noor SA; Mohd Abdah MAA; Jamal SH; Samsuri A
    Heliyon; 2024 Apr; 10(8):e29512. PubMed ID: 38699753
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploring Carbonization Temperature to Create Closed Pores for Hard Carbon as High-Performance Sodium-Ion Battery Anodes.
    Zhang X; Cao Y; Li G; Liu G; Dong X; Wang Y; Jiang X; Zhang X; Xia Y
    Small; 2024 Apr; ():e2311197. PubMed ID: 38593375
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure Dependent Electrochemical Behaviors of Hard Carbon Anode Materials Derived from Natural Polymer for Next-Generation Sodium Ion Battery.
    Kim J; Han SD; Koo B; Lee SH; Yang J
    Polymers (Basel); 2023 Nov; 15(22):. PubMed ID: 38006097
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Honeycomb-like Hard Carbon Derived from Pine Pollen as High-Performance Anode Material for Sodium-Ion Batteries.
    Zhang Y; Li X; Dong P; Wu G; Xiao J; Zeng X; Zhang Y; Sun X
    ACS Appl Mater Interfaces; 2018 Dec; 10(49):42796-42803. PubMed ID: 30461257
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.