These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 3821463)

  • 1. Fat and water separation at 0.23 T using simultaneous shift selective imaging.
    Hennig J; Friedburg H
    Magn Reson Med; 1986 Dec; 3(6):844-8. PubMed ID: 3821463
    [TBL] [Abstract][Full Text] [Related]  

  • 2. zero.1-T human fat/water separation by SIDAC.
    Manabe A; Miyazaki T; Toyoshima H
    Magn Reson Med; 1987 Nov; 5(5):492-501. PubMed ID: 3431412
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemical shift selective MR imaging using a whole-body magnet.
    Frahm J; Haase A; Hänicke W; Matthaei D; Bomsdorf H; Helzel T
    Radiology; 1985 Aug; 156(2):441-4. PubMed ID: 4011907
    [TBL] [Abstract][Full Text] [Related]  

  • 4. T2, Carr-Purcell T2 and T1rho of fat and water as surrogate markers of trabecular bone structure.
    Lammentausta E; Silvast TS; Närväinen J; Jurvelin JS; Nieminen MT; Gröhn OH
    Phys Med Biol; 2008 Feb; 53(3):543-55. PubMed ID: 18199901
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proton MR chemical shift imaging using double and triple phase contrast acquisition methods.
    Lodes CC; Felmlee JP; Ehman RL; Sehgal CM; Greenleaf JF; Glover GH; Gray JE
    J Comput Assist Tomogr; 1989; 13(5):855-61. PubMed ID: 2778144
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiecho water-fat separation and simultaneous R2* estimation with multifrequency fat spectrum modeling.
    Yu H; Shimakawa A; McKenzie CA; Brodsky E; Brittain JH; Reeder SB
    Magn Reson Med; 2008 Nov; 60(5):1122-34. PubMed ID: 18956464
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Separation of true fat and water images by correcting magnetic field inhomogeneity in situ.
    Yeung HN; Kormos DW
    Radiology; 1986 Jun; 159(3):783-6. PubMed ID: 3704157
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hybrid quantitative MRI using chemical shift displacement and recovery-based simultaneous water and lipid imaging: A preliminary study.
    Ohno N; Miyati T; Suzuki S; Kan H; Aoki T; Nakamura Y; Hiramatsu Y; Kobayashi S; Gabata T
    Magn Reson Imaging; 2018 Jul; 50():61-67. PubMed ID: 29545214
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multisection fat-water imaging with chemical shift selective presaturation.
    Keller PJ; Hunter WW; Schmalbrock P
    Radiology; 1987 Aug; 164(2):539-41. PubMed ID: 3602398
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Breath-hold MR measurements of fat fraction, T1 , and T2 * of water and fat in vertebral bone marrow.
    Le Ster C; Gambarota G; Lasbleiz J; Guillin R; Decaux O; Saint-Jalmes H
    J Magn Reson Imaging; 2016 Sep; 44(3):549-55. PubMed ID: 26918280
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Double pulse echoes--a novel approach for fat-water separation in magnetic resonance imaging.
    Kunz D
    Magn Reson Med; 1986 Aug; 3(4):639-43. PubMed ID: 3747825
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hepatic fat quantification using chemical shift MR imaging and MR spectroscopy in the presence of hepatic iron deposition: validation in phantoms and in patients with chronic liver disease.
    Lee SS; Lee Y; Kim N; Kim SW; Byun JH; Park SH; Lee MG; Ha HK
    J Magn Reson Imaging; 2011 Jun; 33(6):1390-8. PubMed ID: 21591008
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemical-shift magnetic resonance imaging of two-line spectra by gradient reversal.
    Axel L; Glover G; Pelc N
    Magn Reson Med; 1985 Oct; 2(5):428-36. PubMed ID: 4094557
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vivo nuclear magnetic resonance chemical shift imaging by selective irradiation.
    Bottomley PA; Foster TH; Leue WM
    Proc Natl Acad Sci U S A; 1984 Nov; 81(21):6856-60. PubMed ID: 6593729
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemical-shift-selective magnetic-resonance imaging of avascular necrosis of the femoral head.
    Matthaei D; Frahm J; Haase A; Schuster R; Bomsdorf H
    Lancet; 1985 Feb; 1(8425):370-1. PubMed ID: 2857422
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fat/water quantitation and differential relaxation time measurement using chemical shift imaging technique.
    Poon CS; Szumowski J; Plewes DB; Ashby P; Henkelman RM
    Magn Reson Imaging; 1989; 7(4):369-82. PubMed ID: 2811618
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Water-fat separation in diffusion-weighted EPI using an IDEAL approach with image navigator.
    Burakiewicz J; Charles-Edwards GD; Goh V; Schaeffter T
    Magn Reson Med; 2015 Mar; 73(3):964-72. PubMed ID: 24723244
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of chemical shift-encoded water-fat MRI and MR spectroscopy in quantification of marrow fat in postmenopausal females.
    Li G; Xu Z; Gu H; Li X; Yuan W; Chang S; Fan J; Calimente H; Hu J
    J Magn Reson Imaging; 2017 Jan; 45(1):66-73. PubMed ID: 27341545
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relaxation effects in MRI-based quantification of fat content and fatty acid composition.
    Peterson P; Svensson J; Månsson S
    Magn Reson Med; 2014 Nov; 72(5):1320-9. PubMed ID: 24327547
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The need for T₂ correction on MRS-based vertebral bone marrow fat quantification: implications for bone marrow fat fraction age dependence.
    Dieckmeyer M; Ruschke S; Cordes C; Yap SP; Kooijman H; Hauner H; Rummeny EJ; Bauer JS; Baum T; Karampinos DC
    NMR Biomed; 2015 Apr; 28(4):432-9. PubMed ID: 25683154
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.