These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 3821483)
1. In vivo determination of body iron stores by natural-abundance deuterium magnetic resonance spectroscopy. Irving MG; Brereton IM; Field J; Doddrell DM Magn Reson Med; 1987 Jan; 4(1):88-92. PubMed ID: 3821483 [TBL] [Abstract][Full Text] [Related]
2. Nuclear magnetic resonance of iron and copper disease states. Runge VM; Clanton JA; Smith FW; Hutchison J; Mallard J; Partain CL; James AE AJR Am J Roentgenol; 1983 Nov; 141(5):943-8. PubMed ID: 6605066 [TBL] [Abstract][Full Text] [Related]
3. Deuterium nuclear magnetic resonance spectroscopy of deuterated pyridine-iron(III) porphyrin complexes. Locations and relaxation times of bound deuterated pyridine resonances. Shimizu T; Nozawa T; Hatano M J Biochem; 1982 Jun; 91(6):1951-8. PubMed ID: 7118856 [TBL] [Abstract][Full Text] [Related]
4. Preliminary studies on the potential of in vivo deuterium NMR spectroscopy. Brereton IM; Irving MG; Field J; Doddrell DM Biochem Biophys Res Commun; 1986 May; 137(1):579-84. PubMed ID: 3718521 [TBL] [Abstract][Full Text] [Related]
5. Nuclear magnetic resonance imaging of experimentally induced liver disease. Stark DD; Bass NM; Moss AA; Bacon BR; McKerrow JH; Cann CE; Brito A; Goldberg HI Radiology; 1983 Sep; 148(3):743-51. PubMed ID: 6192464 [TBL] [Abstract][Full Text] [Related]
6. Dynamical and temperature-dependent effects of lipid-protein interactions. Application of deuterium nuclear magnetic resonance and electron paramagnetic resonance spectroscopy to the same reconstitutions of cytochrome c oxidase. Paddy MR; Dahlquist FW; Davis JH; Bloom M Biochemistry; 1981 May; 20(11):3152-62. PubMed ID: 6264951 [TBL] [Abstract][Full Text] [Related]
7. Evaluation of nuclear magnetic resonance spectroscopy for determination of deuterium abundance in body fluids: application to measurement of total-body water in human infants. Rebouche CJ; Pearson GA; Serfass RE; Roth CW; Finley JW Am J Clin Nutr; 1987 Feb; 45(2):373-80. PubMed ID: 3028119 [TBL] [Abstract][Full Text] [Related]
8. Combined analysis of C-18 unsaturated fatty acids using natural abundance deuterium 2D NMR spectroscopy in chiral oriented solvents. Lesot P; Baillif V; Billault I Anal Chem; 2008 Apr; 80(8):2963-72. PubMed ID: 18327921 [TBL] [Abstract][Full Text] [Related]
9. Multispectral quantitative magnetic resonance imaging of brain iron stores: a theoretical perspective. Jara H; Sakai O; Mankal P; Irving RP; Norbash AM Top Magn Reson Imaging; 2006 Feb; 17(1):19-30. PubMed ID: 17179894 [TBL] [Abstract][Full Text] [Related]
10. Nuclear magnetic resonance studies of amino acids and proteins. Rotational correlation times of proteins by deuterium nuclear magnetic resonance spectroscopy. Schramm S; Oldfield E Biochemistry; 1983 Jun; 22(12):2908-13. PubMed ID: 6871171 [TBL] [Abstract][Full Text] [Related]
11. Paramagnetic NMR spectroscopy and density functional calculations in the analysis of the geometric and electronic structures of iron-sulfur proteins. Machonkin TE; Westler WM; Markley JL Inorg Chem; 2005 Feb; 44(4):779-97. PubMed ID: 15859246 [TBL] [Abstract][Full Text] [Related]
12. Assessment of hepatic iron overload in thalassemic patients by magnetic resonance spectroscopy. Dixon RM; Styles P; al-Refaie FN; Kemp GJ; Donohue SM; Wonke B; Hoffbrand AV; Radda GK; Rajagopalan B Hepatology; 1994 Apr; 19(4):904-10. PubMed ID: 8138264 [TBL] [Abstract][Full Text] [Related]
13. Protein mobility and self-association by deuterium nuclear magnetic resonance. Wooten JB; Cohen JS Biochemistry; 1979 Sep; 18(19):4188-91. PubMed ID: 39594 [TBL] [Abstract][Full Text] [Related]
14. The SPORT-NMR software: a tool for determining relaxation times in unresolved NMR spectra. Geppi M; Forte C J Magn Reson; 1999 Mar; 137(1):177-85. PubMed ID: 10053146 [TBL] [Abstract][Full Text] [Related]
15. Nonglycolytic acidification of murine radiation-induced fibrosarcoma 1 tumor via 3-O-methyl-D-glucose monitored by 1H, 2H, 13C, and 31P nuclear magnetic resonance spectroscopy. Hwang YY; Kim SG; Evelhoch JL; Ackerman JJ Cancer Res; 1992 Mar; 52(5):1259-66. PubMed ID: 1737388 [TBL] [Abstract][Full Text] [Related]
16. Quantification of cardiac and tissue iron by nuclear magnetic resonance relaxometry in a novel murine thalassemia-cardiac iron overload model. Liu P; Henkelman M; Joshi J; Hardy P; Butany J; Iwanochko M; Clauberg M; Dhar M; Mai D; Waien S; Olivieri N Can J Cardiol; 1996 Feb; 12(2):155-64. PubMed ID: 8605637 [TBL] [Abstract][Full Text] [Related]
17. Effect of magnetic field and iron content on NMR proton relaxation of liver, spleen and brain tissues. Hocq A; Luhmer M; Saussez S; Louryan S; Gillis P; Gossuin Y Contrast Media Mol Imaging; 2015; 10(2):144-52. PubMed ID: 24954138 [TBL] [Abstract][Full Text] [Related]
18. Anisotropic 2H-nuclear magnetic resonance spin-lattice relaxation in cerebroside- and phospholipid-cholesterol bilayer membranes. Siminovitch DJ; Ruocco MJ; Olejniczak ET; Das Gupta SK; Griffin RG Biophys J; 1988 Sep; 54(3):373-81. PubMed ID: 3207831 [TBL] [Abstract][Full Text] [Related]
19. Magnetic resonance imaging and spectroscopy of hepatic iron overload. Stark DD; Moseley ME; Bacon BR; Moss AA; Goldberg HI; Bass NM; James TL Radiology; 1985 Jan; 154(1):137-42. PubMed ID: 3964933 [TBL] [Abstract][Full Text] [Related]
20. The state of water in biological systems as studied by proton and deuterium relaxation. Fung BM; Durham DL; Wassil DA Biochim Biophys Acta; 1975 Jul; 399(1):191-202. PubMed ID: 1148275 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]