These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 38215044)
1. Enhanced Stability and Catalytic Activity of a Nanocatalyst with Reusable Ionic Liquid Hydrogels for the Reduction of Organic Pollutants. Lv X; Lv A; Xie T; Shao Z; Yin G; Li D; Xu L; Sun S Langmuir; 2024 Jan; 40(4):2210-2219. PubMed ID: 38215044 [TBL] [Abstract][Full Text] [Related]
2. Tailored chitosan-based entrapped catalyst for dyes removal by highly active, stable, and recyclable nanoparticles toughened hydrogel. Xie T; Lv X; Tian S; Zhang X; Lv Z; Sun S Int J Biol Macromol; 2023 Aug; 245():125634. PubMed ID: 37399876 [TBL] [Abstract][Full Text] [Related]
3. Highly tough, anti-fatigue and rapidly self-recoverable hydrogels reinforced with core-shell inorganic-organic hybrid latex particles. Xia S; Song S; Ren X; Gao G Soft Matter; 2017 Sep; 13(36):6059-6067. PubMed ID: 28776059 [TBL] [Abstract][Full Text] [Related]
4. A highly sensitive strain sensor based on a silica@polyaniline core-shell particle reinforced hydrogel with excellent flexibility, stretchability, toughness and conductivity. Li Y; Liu C; Lv X; Sun S Soft Matter; 2021 Mar; 17(8):2142-2150. PubMed ID: 33439186 [TBL] [Abstract][Full Text] [Related]
5. Carbon Nanotubes and Silica@polyaniline Core-Shell Particles Synergistically Enhance the Toughness and Electrical Conductivity in Hydrophobic Associated Hydrogels. Xie Y; Lv X; Li Y; Lv A; Sui X; Tian S; Jiang L; Li R; Sun S Langmuir; 2023 Jan; ():. PubMed ID: 36630713 [TBL] [Abstract][Full Text] [Related]
6. Ionic liquid decorated MXene/Poly (N-isopropylacrylamide) composite hydrogel with high strength, chemical stability and strong adsorption. Wang Q; Cui L; Xu J; Dong F; Xiong Y Chemosphere; 2022 Sep; 303(Pt 1):135083. PubMed ID: 35618063 [TBL] [Abstract][Full Text] [Related]
7. Mechanically Robust and Electrically Conductive Hybrid Hydrogel Electrolyte Enabled by Simultaneous Dual In Situ Sol-Gel Technique and Free Radical Copolymerization. Du J; Hou X; Zhu W; Zhou H; She X; Yang Q; Tsou C Macromol Rapid Commun; 2024 Nov; 45(21):e2400404. PubMed ID: 39083305 [TBL] [Abstract][Full Text] [Related]
8. Novel Uracil-Functionalized Poly(ionic liquid) Hydrogel: Highly Stretchable and Sensitive as a Direct Wearable Ionic Skin for Human Motion Detection. Fu D; Huang G; Xie Y; Zheng M; Feng J; Kan K; Shen J ACS Appl Mater Interfaces; 2023 Mar; 15(8):11062-11075. PubMed ID: 36787995 [TBL] [Abstract][Full Text] [Related]
10. Ionic liquid assisted in situ growth of nano-confined ionic liquids/metal-organic frameworks nanocomposites for monolithic capillary microextraction of microcystins in environmental waters. Huang T; Lei X; Wang S; Lin C; Wu X J Chromatogr A; 2023 Mar; 1692():463849. PubMed ID: 36764066 [TBL] [Abstract][Full Text] [Related]
11. Ultrastretchable and Stable Conductive Elastomer Based on Micro-Ionicgel for Wide-Working-Range Sensors. Yu X; Wang Y; Zhang H; Fan X; Liu T ACS Appl Mater Interfaces; 2021 Nov; 13(44):53091-53098. PubMed ID: 34704734 [TBL] [Abstract][Full Text] [Related]
12. Super-tough, anti-fatigue, self-healable, anti-fogging, and UV shielding hybrid hydrogel prepared via simultaneous dual in situ sol-gel technique and radical polymerization. Du J; She X; Zhu W; Yang Q; Zhang H; Tsou C J Mater Chem B; 2019 Dec; 7(45):7162-7175. PubMed ID: 31647091 [TBL] [Abstract][Full Text] [Related]
13. In-situ structuring a robust cellulose hydrogel with ZnO/SiO Ren JX; Zhu JL; Shi SC; Yin MQ; Huang HD; Li ZM Carbohydr Polym; 2022 Nov; 296():119957. PubMed ID: 36087999 [TBL] [Abstract][Full Text] [Related]
14. Effect of sizes of vinyl modified narrow-dispersed silica cross-linker on the mechanical properties of acrylamide based hydrogel. Karim MR; Harun-Ur-Rashid M; Imran AB Sci Rep; 2023 Mar; 13(1):5089. PubMed ID: 36991034 [TBL] [Abstract][Full Text] [Related]
15. Self-healable, tough and highly stretchable ionic nanocomposite physical hydrogels. Zhong M; Liu XY; Shi FK; Zhang LQ; Wang XP; Cheetham AG; Cui H; Xie XM Soft Matter; 2015 Jun; 11(21):4235-41. PubMed ID: 25892460 [TBL] [Abstract][Full Text] [Related]
16. Easy fabrication of poly(butyl acrylate)/silicon dioxide core-shell composite microspheres through ultrasonically initiated encapsulation emulsion polymerization. Guo S; Wang X; Gao Z; Wang G; Nie M Ultrason Sonochem; 2018 Nov; 48():19-29. PubMed ID: 30080542 [TBL] [Abstract][Full Text] [Related]
17. Ultrastiff, Tough, and Healable Ionic-Hydrogen Bond Cross-Linked Hydrogels and Their Uses as Building Blocks To Construct Complex Hydrogel Structures. Liang Y; Xue J; Du B; Nie J ACS Appl Mater Interfaces; 2019 Feb; 11(5):5441-5454. PubMed ID: 30624049 [TBL] [Abstract][Full Text] [Related]
18. Ionic liquids for nano- and microstructures preparation. Part 2: Application in synthesis. Ćuczak J; Paszkiewicz M; Krukowska A; Malankowska A; Zaleska-Medynska A Adv Colloid Interface Sci; 2016 Jan; 227():1-52. PubMed ID: 26520242 [TBL] [Abstract][Full Text] [Related]
19. Electric field-induced gradient strength in nanocomposite hydrogel through gradient crosslinking of clay. Tan Y; Wu R; Li H; Ren W; Du J; Xu S; Wang J J Mater Chem B; 2015 Jun; 3(21):4426-4430. PubMed ID: 32262786 [TBL] [Abstract][Full Text] [Related]
20. Plant-Inspired Multifunctional Fluorescent Hydrogel: A Highly Stretchable and Recoverable Self-Healing Platform with Water-Controlled Adhesiveness for Highly Effective Antibacterial Application and Data Encryption-Decryption. Wang N; Yu KK; Li K; Li MJ; Wei X; Yu XQ ACS Appl Mater Interfaces; 2020 Dec; 12(52):57686-57694. PubMed ID: 33331759 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]