These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 38215166)

  • 1. Controlling target brain regions by optimal selection of input nodes.
    Manjunatha KKH; Baron G; Benozzo D; Silvestri E; Corbetta M; Chiuso A; Bertoldo A; Suweis S; Allegra M
    PLoS Comput Biol; 2024 Jan; 20(1):e1011274. PubMed ID: 38215166
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SPARK: Sparsity-based analysis of reliable k-hubness and overlapping network structure in brain functional connectivity.
    Lee K; Lina JM; Gotman J; Grova C
    Neuroimage; 2016 Jul; 134():434-449. PubMed ID: 27046111
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mapping individual differences across brain network structure to function and behavior with connectome embedding.
    Levakov G; Faskowitz J; Avidan G; Sporns O
    Neuroimage; 2021 Nov; 242():118469. PubMed ID: 34390875
    [TBL] [Abstract][Full Text] [Related]  

  • 4. How do parcellation size and short-range connectivity affect dynamics in large-scale brain network models?
    Proix T; Spiegler A; Schirner M; Rothmeier S; Ritter P; Jirsa VK
    Neuroimage; 2016 Nov; 142():135-149. PubMed ID: 27480624
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimally controlling the human connectome: the role of network topology.
    Betzel RF; Gu S; Medaglia JD; Pasqualetti F; Bassett DS
    Sci Rep; 2016 Jul; 6():30770. PubMed ID: 27468904
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Language Recovery after Brain Injury: A Structural Network Control Theory Study.
    Wilmskoetter J; He X; Caciagli L; Jensen JH; Marebwa B; Davis KA; Fridriksson J; Basilakos A; Johnson LP; Rorden C; Bassett D; Bonilha L
    J Neurosci; 2022 Jan; 42(4):657-669. PubMed ID: 34872927
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Network analysis of whole-brain fMRI dynamics: A new framework based on dynamic communicability.
    Gilson M; Kouvaris NE; Deco G; Mangin JF; Poupon C; Lefranc S; Rivière D; Zamora-López G
    Neuroimage; 2019 Nov; 201():116007. PubMed ID: 31306771
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Connectome-based models predict attentional control in aging adults.
    Fountain-Zaragoza S; Samimy S; Rosenberg MD; Prakash RS
    Neuroimage; 2019 Feb; 186():1-13. PubMed ID: 30394324
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimation of Directed Effective Connectivity from fMRI Functional Connectivity Hints at Asymmetries of Cortical Connectome.
    Gilson M; Moreno-Bote R; Ponce-Alvarez A; Ritter P; Deco G
    PLoS Comput Biol; 2016 Mar; 12(3):e1004762. PubMed ID: 26982185
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural Basis of Large-Scale Functional Connectivity in the Mouse.
    Grandjean J; Zerbi V; Balsters JH; Wenderoth N; Rudin M
    J Neurosci; 2017 Aug; 37(34):8092-8101. PubMed ID: 28716961
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The structural connectome constrains fast brain dynamics.
    Sorrentino P; Seguin C; Rucco R; Liparoti M; Troisi Lopez E; Bonavita S; Quarantelli M; Sorrentino G; Jirsa V; Zalesky A
    Elife; 2021 Jul; 10():. PubMed ID: 34240702
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamical Signatures of Structural Connectivity Damage to a Model of the Brain Posed at Criticality.
    Haimovici A; Balenzuela P; Tagliazucchi E
    Brain Connect; 2016 Dec; 6(10):759-771. PubMed ID: 27758115
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The human connectome: origins and challenges.
    Sporns O
    Neuroimage; 2013 Oct; 80():53-61. PubMed ID: 23528922
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heritability and Cognitive Relevance of Structural Brain Controllability.
    Lee WH; Rodrigue A; Glahn DC; Bassett DS; Frangou S
    Cereb Cortex; 2020 May; 30(5):3044-3054. PubMed ID: 31838501
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparing connectomes across subjects and populations at different scales.
    Meskaldji DE; Fischi-Gomez E; Griffa A; Hagmann P; Morgenthaler S; Thiran JP
    Neuroimage; 2013 Oct; 80():416-25. PubMed ID: 23631992
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional connectivity hubs of the mouse brain.
    Liska A; Galbusera A; Schwarz AJ; Gozzi A
    Neuroimage; 2015 Jul; 115():281-91. PubMed ID: 25913701
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thresholding functional connectomes by means of mixture modeling.
    Bielczyk NZ; Walocha F; Ebel PW; Haak KV; Llera A; Buitelaar JK; Glennon JC; Beckmann CF
    Neuroimage; 2018 May; 171():402-414. PubMed ID: 29309896
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using connectome-based predictive modeling to predict individual behavior from brain connectivity.
    Shen X; Finn ES; Scheinost D; Rosenberg MD; Chun MM; Papademetris X; Constable RT
    Nat Protoc; 2017 Mar; 12(3):506-518. PubMed ID: 28182017
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inner Hemispheric and Interhemispheric Connectivity Balance in the Human Brain.
    Krupnik R; Yovel Y; Assaf Y
    J Neurosci; 2021 Oct; 41(40):8351-8361. PubMed ID: 34465598
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Network-level macroscale structural connectivity predicts propagation of transcranial magnetic stimulation.
    Momi D; Ozdemir RA; Tadayon E; Boucher P; Shafi MM; Pascual-Leone A; Santarnecchi E
    Neuroimage; 2021 Apr; 229():117698. PubMed ID: 33385561
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.