These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Deterministic storage and retrieval of telecom light from a quantum dot single-photon source interfaced with an atomic quantum memory. Thomas SE; Wagner L; Joos R; Sittig R; Nawrath C; Burdekin P; de Buy Wenniger IM; Rasiah MJ; Huber-Loyola T; Sagona-Stophel S; Höfling S; Jetter M; Michler P; Walmsley IA; Portalupi SL; Ledingham PM Sci Adv; 2024 Apr; 10(15):eadi7346. PubMed ID: 38608017 [TBL] [Abstract][Full Text] [Related]
4. Quantum frequency conversion of quantum memory compatible photons to telecommunication wavelengths. Fernandez-Gonzalvo X; Corrielli G; Albrecht B; Grimau ML; Cristiani M; de Riedmatten H Opt Express; 2013 Aug; 21(17):19473-87. PubMed ID: 24105495 [TBL] [Abstract][Full Text] [Related]
5. Fast, noise-free memory for photon synchronization at room temperature. Finkelstein R; Poem E; Michel O; Lahad O; Firstenberg O Sci Adv; 2018 Jan; 4(1):eaap8598. PubMed ID: 29349302 [TBL] [Abstract][Full Text] [Related]
6. High efficiency coherent optical memory with warm rubidium vapour. Hosseini M; Sparkes BM; Campbell G; Lam PK; Buchler BC Nat Commun; 2011 Feb; 2():174. PubMed ID: 21285952 [TBL] [Abstract][Full Text] [Related]
9. Gradient echo quantum memory in warm atomic vapor. Pinel O; Hosseini M; Sparkes BM; Everett JL; Higginbottom D; Campbell GT; Lam PK; Buchler BC J Vis Exp; 2013 Nov; (81):e50552. PubMed ID: 24300586 [TBL] [Abstract][Full Text] [Related]
10. Photon echoes generated by reversing magnetic field gradients in a rubidium vapor. Hétet G; Hosseini M; Sparkes BM; Oblak D; Lam PK; Buchler BC Opt Lett; 2008 Oct; 33(20):2323-5. PubMed ID: 18923610 [TBL] [Abstract][Full Text] [Related]
11. Slow and fast single photons from a quantum dot interacting with the excited state hyperfine structure of the Cesium D Kroh T; Wolters J; Ahlrichs A; Schell AW; Thoma A; Reitzenstein S; Wildmann JS; Zallo E; Trotta R; Rastelli A; Schmidt OG; Benson O Sci Rep; 2019 Sep; 9(1):13728. PubMed ID: 31551434 [TBL] [Abstract][Full Text] [Related]
12. Comparative analysis of light storage in antirelaxation-coated and buffer-gas-filled alkali vapor cells. Đujić M; Buhin D; Šantić N; Aumiler D; Ban T Sci Rep; 2024 Jun; 14(1):14467. PubMed ID: 38914638 [TBL] [Abstract][Full Text] [Related]
16. Storage and recall of weak coherent optical pulses with an efficiency of 25%. Sabooni M; Beaudoin F; Walther A; Lin N; Amari A; Huang M; Kröll S Phys Rev Lett; 2010 Aug; 105(6):060501. PubMed ID: 20867963 [TBL] [Abstract][Full Text] [Related]
17. Precision spectral manipulation of optical pulses using a coherent photon echo memory. Buchler BC; Hosseini M; Hétet G; Sparkes BM; Lam PK Opt Lett; 2010 Apr; 35(7):1091-3. PubMed ID: 20364227 [TBL] [Abstract][Full Text] [Related]
18. Temporal intensity correlation of bunched light from a warm atomic vapor with a ladder-type two-photon transition. Park J; Jeong T; Moon HS Sci Rep; 2018 Jul; 8(1):10981. PubMed ID: 30030515 [TBL] [Abstract][Full Text] [Related]
19. High efficiency optical modulation at a telecom wavelength using the quantum Zeno effect in a ladder transition in Rb atoms. Krishnamurthy S; Wang Y; Tu Y; Tseng S; Shahriar MS Opt Express; 2012 Jun; 20(13):13798-809. PubMed ID: 22714445 [TBL] [Abstract][Full Text] [Related]
20. Ellipsometric spectroscopy of rubidium vapor cell at near-normal incidence. Mosleh M; Ranjbaran M; Hamidi SM; Tehranchi MM Sci Rep; 2020 Oct; 10(1):17080. PubMed ID: 33051555 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]