BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 38215494)

  • 1. Limitations in the electrochemical analysis of voltage transients.
    Harris AR
    J Neural Eng; 2024 Jan; 21(1):. PubMed ID: 38215494
    [No Abstract]   [Full Text] [Related]  

  • 2. Using Chronopotentiometry to Better Characterize the Charge Injection Mechanisms of Platinum Electrodes Used in Bionic Devices.
    Harris AR; Newbold C; Carter P; Cowan R; Wallace GG
    Front Neurosci; 2019; 13():380. PubMed ID: 31118879
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrochemical safety limits for clinical stimulation investigated using depth and strip electrodes in the pig brain.
    Vatsyayan R; Cleary D; Martin JR; Halgren E; Dayeh SA
    J Neural Eng; 2021 Jun; 18(4):. PubMed ID: 34015769
    [No Abstract]   [Full Text] [Related]  

  • 4. Comparison of the In Vitro and In Vivo Electrochemical Performance of Bionic Electrodes.
    Harris AR; Newbold C; Stathopoulos D; Carter P; Cowan R; Wallace GG
    Micromachines (Basel); 2022 Jan; 13(1):. PubMed ID: 35056268
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measuring the effective area and charge density of platinum electrodes for bionic devices.
    Harris AR; Newbold C; Carter P; Cowan R; Wallace GG
    J Neural Eng; 2018 Aug; 15(4):046015. PubMed ID: 29595147
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wireless transmission of voltage transients from a chronically implanted neural stimulation device.
    Frederick RA; Troyk PR; Cogan SF
    J Neural Eng; 2022 Apr; 19(2):. PubMed ID: 35378519
    [No Abstract]   [Full Text] [Related]  

  • 7. Chronic stability of activated iridium oxide film voltage transients from wireless floating microelectrode arrays.
    Frederick RA; Shih E; Towle VL; Joshi-Imre A; Troyk PR; Cogan SF
    Front Neurosci; 2022; 16():876032. PubMed ID: 36003961
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Understanding charge transfer on the clinically used conical Utah electrode array: charge storage capacity, electrochemical impedance spectroscopy and effective electrode area.
    Harris AR
    J Neural Eng; 2021 Feb; 18(2):. PubMed ID: 33401255
    [No Abstract]   [Full Text] [Related]  

  • 9. Electrochemical performance of platinum electrodes within the multi-electrode spiral nerve cuff.
    Rozman J; Pečlin P; Mehle A; Šala M
    Australas Phys Eng Sci Med; 2014 Sep; 37(3):525-33. PubMed ID: 24938675
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Residual voltage as an ad-hoc indicator of electrode damage in biphasic electrical stimulation.
    Krishnan A; Forssell M; Du Z; Cui XT; Fedder GK; Kelly SK
    J Neural Eng; 2021 Aug; 18(4):. PubMed ID: 34400592
    [No Abstract]   [Full Text] [Related]  

  • 11. Platinum dissolution and tissue response following long-term electrical stimulation at high charge densities.
    Shepherd RK; Carter PM; Dalrymple AN; Enke YL; Wise AK; Nguyen T; Firth J; Thompson A; Fallon JB
    J Neural Eng; 2021 Mar; 18(3):. PubMed ID: 33578409
    [No Abstract]   [Full Text] [Related]  

  • 12. Access resistance of stimulation electrodes as a function of electrode proximity to the retina.
    Majdi JA; Minnikanti S; Peixoto N; Agrawal A; Cohen ED
    J Neural Eng; 2015 Feb; 12(1):016006. PubMed ID: 25474329
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A universal model of electrochemical safety limits
    Vatsyayan R; Dayeh SA
    Front Neurosci; 2022; 16():972252. PubMed ID: 36277998
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct measurement of oxygen reduction reactions at neurostimulation electrodes.
    Ehlich J; Migliaccio L; Sahalianov I; Nikić M; Brodský J; Gablech I; Vu XT; Ingebrandt S; Głowacki ED
    J Neural Eng; 2022 Jun; 19(3):. PubMed ID: 35688124
    [No Abstract]   [Full Text] [Related]  

  • 15. Effect of stimulus and recording parameters on spatial spread of excitation and masking patterns obtained with the electrically evoked compound action potential in cochlear implants.
    Hughes ML; Stille LJ
    Ear Hear; 2010 Oct; 31(5):679-92. PubMed ID: 20505513
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ECAP spread of excitation with virtual channels and physical electrodes.
    Hughes ML; Stille LJ; Baudhuin JL; Goehring JL
    Hear Res; 2013 Dec; 306():93-103. PubMed ID: 24095669
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polymer Bioelectronics: A Solution for Both Stimulating and Recording Electrodes.
    Cuttaz EA; Bailey ZK; Chapman CAR; Goding JA; Green RA
    Adv Healthc Mater; 2024 May; ():e2304447. PubMed ID: 38775757
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electron transfer processes occurring on platinum neural stimulating electrodes: calculated charge-storage capacities are inaccessible during applied stimulation.
    Hudak EM; Kumsa DW; Martin HB; Mortimer JT
    J Neural Eng; 2017 Aug; 14(4):046012. PubMed ID: 28345534
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chronic impedance spectroscopy of an endovascular stent-electrode array.
    Opie NL; John SE; Rind GS; Ronayne SM; Grayden DB; Burkitt AN; May CN; O'Brien TJ; Oxley TJ
    J Neural Eng; 2016 Aug; 13(4):046020. PubMed ID: 27378157
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Activated iridium oxide film (AIROF) electrodes for neural tissue stimulation.
    Frederick RA; Meliane IY; Joshi-Imre A; Troyk PR; Cogan SF
    J Neural Eng; 2020 Oct; 17(5):056001. PubMed ID: 32947268
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.