These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 38215594)

  • 1. Multi-layered physical factors govern mercury release from soil: Implications for predicting the environmental fate of mercury.
    Kondo M; Korre A; Komai T; Watanabe N
    J Environ Manage; 2024 Feb; 352():120024. PubMed ID: 38215594
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mercury degassing from forested and open field soils in Rondônia, Western Amazon, Brazil.
    Almeida MD; Marins RV; Paraquetti HH; Bastos WR; Lacerda LD
    Chemosphere; 2009 Sep; 77(1):60-6. PubMed ID: 19555993
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Eddy covariance flux measurements of gaseous elemental mercury using cavity ring-down spectroscopy.
    Pierce AM; Moore CW; Wohlfahrt G; Hörtnagl L; Kljun N; Obrist D
    Environ Sci Technol; 2015 Feb; 49(3):1559-68. PubMed ID: 25608027
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Air-soil exchange of mercury from background soils in the United States.
    Ericksen JA; Gustin MS; Xin M; Weisberg PJ; Fernandez GC
    Sci Total Environ; 2006 Aug; 366(2-3):851-63. PubMed ID: 16181661
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Mercury fluxes from conifer-broadleaf forested field in central subtropical forest zone].
    Ma M; Wang DY; Shen YY; Sun RG; Huang LX
    Huan Jing Ke Xue; 2014 Jan; 35(1):85-92. PubMed ID: 24720190
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mercury speciation, transformation, and transportation in soils, atmospheric flux, and implications for risk management: A critical review.
    O'Connor D; Hou D; Ok YS; Mulder J; Duan L; Wu Q; Wang S; Tack FMG; Rinklebe J
    Environ Int; 2019 May; 126():747-761. PubMed ID: 30878870
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modelling of mercury emissions from background soils.
    Scholtz MT; Van Heyst BJ; Schroeder WH
    Sci Total Environ; 2003 Mar; 304(1-3):185-207. PubMed ID: 12663183
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Atmospheric mercury exchange with a tallgrass prairie ecosystem housed in mesocosms.
    Stamenkovic J; Gustin MS; Arnone JA; Johnson DW; Larsen JD; Verburg PS
    Sci Total Environ; 2008 Nov; 406(1-2):227-38. PubMed ID: 18775555
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Soil-air exchange of mercury from agricultural fields in Zhejiang, East China: Seasonal variations, influence factors, and models of fluxes.
    Shi T; Gong Y; Ma J; Wu H; Yang S; Ju T; Qu Y; Liu L
    Chemosphere; 2020 Jun; 249():126063. PubMed ID: 32058128
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Health risk assessment of gaseous elemental mercury (GEM) in Mexico City.
    Schiavo B; Morton-Bermea O; Salgado-Martínez E; García-Martínez R; Hernández-Álvarez E
    Environ Monit Assess; 2022 May; 194(7):456. PubMed ID: 35612636
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mercury emission and dispersion models from soils contaminated by cinnabar mining and metallurgy.
    Llanos W; Kocman D; Higueras P; Horvat M
    J Environ Monit; 2011 Dec; 13(12):3460-8. PubMed ID: 22037967
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Atmospheric mercury deposition and its contribution of the regional atmospheric transport to mercury pollution at a national forest nature reserve, southwest China.
    Ma M; Wang D; Du H; Sun T; Zhao Z; Wei S
    Environ Sci Pollut Res Int; 2015 Dec; 22(24):20007-18. PubMed ID: 26298336
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Study on the reduction of atmospheric mercury emissions from mine waste enriched soils through native grass cover in the Mt. Amiata region of Italy.
    Fantozzi L; Ferrara R; Dini F; Tamburello L; Pirrone N; Sprovieri F
    Environ Res; 2013 Aug; 125():69-74. PubMed ID: 23477569
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Previously unaccounted atmospheric mercury deposition in a midlatitude deciduous forest.
    Obrist D; Roy EM; Harrison JL; Kwong CF; Munger JW; Moosmüller H; Romero CD; Sun S; Zhou J; Commane R
    Proc Natl Acad Sci U S A; 2021 Jul; 118(29):. PubMed ID: 34272289
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gaseous mercury fluxes from the forest floor of the Adirondacks.
    Choi HD; Holsen TM
    Environ Pollut; 2009 Feb; 157(2):592-600. PubMed ID: 18922608
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Empirical models for estimating mercury flux from soils.
    Lin CJ; Gustin MS; Singhasuk P; Eckley C; Miller M
    Environ Sci Technol; 2010 Nov; 44(22):8522-8. PubMed ID: 20964360
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Field measurement of soil mercury emission in a Masson pine forest in Tieshanping, Chongqing in Southwestern China].
    Du BY; Wang Q; Luo Y; Duan L
    Huan Jing Ke Xue; 2014 Oct; 35(10):3830-5. PubMed ID: 25693390
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Atmospheric mercury emissions from polluted gold mining areas (Venezuela).
    García-Sánchez A; Contreras F; Adams M; Santos F
    Environ Geochem Health; 2006 Dec; 28(6):529-40. PubMed ID: 17120104
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gaseous mercury fluxes from forest soils in response to forest harvesting intensity: a field manipulation experiment.
    Mazur M; Mitchell CPJ; Eckley CS; Eggert SL; Kolka RK; Sebestyen SD; Swain EB
    Sci Total Environ; 2014 Oct; 496():678-687. PubMed ID: 24993512
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influences of high-level atmospheric gaseous elemental mercury on methylmercury accumulation in maize (Zea mays L.).
    Sun T; Wang Z; Zhang X; Niu Z; Chen J
    Environ Pollut; 2020 Oct; 265(Pt B):114890. PubMed ID: 32544787
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.