BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 38215596)

  • 1. High organic carbon content constricts the potential for stable organic carbon accrual in mineral agricultural soils in Finland.
    Soinne H; Hyyrynen M; Jokubė M; Keskinen R; Hyväluoma J; Pihlainen S; Hyytiäinen K; Miettinen A; Rasa K; Lemola R; Virtanen E; Heinonsalo J; Heikkinen J
    J Environ Manage; 2024 Feb; 352():119945. PubMed ID: 38215596
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carbon storage capacity of semi-arid grassland soils and sequestration potentials in northern China.
    Wiesmeier M; Munro S; Barthold F; Steffens M; Schad P; Kögel-Knabner I
    Glob Chang Biol; 2015 Oct; 21(10):3836-45. PubMed ID: 25916410
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carbon sequestration potential of soils in southeast Germany derived from stable soil organic carbon saturation.
    Wiesmeier M; Hübner R; Spörlein P; Geuß U; Hangen E; Reischl A; Schilling B; von Lützow M; Kögel-Knabner I
    Glob Chang Biol; 2014 Feb; 20(2):653-65. PubMed ID: 24038905
    [TBL] [Abstract][Full Text] [Related]  

  • 4. No detectable upper limit of mineral-associated organic carbon in temperate agricultural soils.
    Begill N; Don A; Poeplau C
    Glob Chang Biol; 2023 Aug; 29(16):4662-4669. PubMed ID: 37271832
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Climate, soil texture, and soil types affect the contributions of fine-fraction-stabilized carbon to total soil organic carbon in different land uses across China.
    Cai A; Feng W; Zhang W; Xu M
    J Environ Manage; 2016 May; 172():2-9. PubMed ID: 26905446
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contribution of water erosion to organic carbon and total nitrogen loads in agricultural discharge from boreal mineral soils.
    Manninen N; Kanerva S; Lemola R; Turtola E; Soinne H
    Sci Total Environ; 2023 Dec; 905():167300. PubMed ID: 37742969
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carbon sequestration in paddy soils: Contribution and mechanisms of mineral-associated SOC formation.
    Niu C; Weng L; Lian W; Zhang R; Ma J; Chen Y
    Chemosphere; 2023 Aug; 333():138927. PubMed ID: 37187382
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Roots are key to increasing the mean residence time of organic carbon entering temperate agricultural soils.
    Poeplau C; Don A; Schneider F
    Glob Chang Biol; 2021 Oct; 27(19):4921-4934. PubMed ID: 34228862
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Soil carbon sequestration potential of permanent pasture and continuous cropping soils in New Zealand.
    McNally SR; Beare MH; Curtin D; Meenken ED; Kelliher FM; Calvelo Pereira R; Shen Q; Baldock J
    Glob Chang Biol; 2017 Nov; 23(11):4544-4555. PubMed ID: 28397333
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Climate and mineral accretion as drivers of mineral-associated and particulate organic matter accumulation in tidal wetland soils.
    Fu C; Li Y; Zeng L; Tu C; Wang X; Ma H; Xiao L; Christie P; Luo Y
    Glob Chang Biol; 2024 Jan; 30(1):e17070. PubMed ID: 38273549
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new baseline of organic carbon stock in European agricultural soils using a modelling approach.
    Lugato E; Panagos P; Bampa F; Jones A; Montanarella L
    Glob Chang Biol; 2014 Jan; 20(1):313-26. PubMed ID: 23765562
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Global pattern of organic carbon pools in forest soils.
    Zhang Y; Guo X; Chen L; Kuzyakov Y; Wang R; Zhang H; Han X; Jiang Y; Sun OJ
    Glob Chang Biol; 2024 Jun; 30(6):e17386. PubMed ID: 38899550
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Increasing the organic carbon stocks in mineral soils sequesters large amounts of phosphorus.
    Spohn M
    Glob Chang Biol; 2020 Aug; 26(8):4169-4177. PubMed ID: 32396708
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How much organic carbon could the soil store? The carbon sequestration potential of Australian soil.
    Viscarra Rossel RA; Webster R; Zhang M; Shen Z; Dixon K; Wang YP; Walden L
    Glob Chang Biol; 2024 Jan; 30(1):e17053. PubMed ID: 38273544
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Declining trend of carbon in Finnish cropland soils in 1974-2009.
    Heikkinen J; Ketoja E; Nuutinen V; Regina K
    Glob Chang Biol; 2013 May; 19(5):1456-69. PubMed ID: 23505137
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Carbon sequestration in soil particle-sized fractions during reversion of desertification at Mu Us Sand land.].
    Ma JY; Tong XG; Li ZB; Fu GJ; Li J; Hasier
    Ying Yong Sheng Tai Xue Bao; 2016 Nov; 27(11):3487-3494. PubMed ID: 29696845
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamics and climate change mitigation potential of soil organic carbon sequestration.
    Sommer R; Bossio D
    J Environ Manage; 2014 Nov; 144():83-7. PubMed ID: 24929498
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Digging deeper: A holistic perspective of factors affecting soil organic carbon sequestration in agroecosystems.
    Lal R
    Glob Chang Biol; 2018 Aug; 24(8):3285-3301. PubMed ID: 29341449
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unleashing the sequestration potential of soil organic carbon under climate and land use change scenarios in Danish agroecosystems.
    Gutierrez S; Grados D; Møller AB; de Carvalho Gomes L; Beucher AM; Giannini-Kurina F; de Jonge LW; Greve MH
    Sci Total Environ; 2023 Dec; 905():166921. PubMed ID: 37704130
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combining organic and mineral fertilizers as a climate-smart integrated soil fertility management practice in sub-Saharan Africa: A meta-analysis.
    Gram G; Roobroeck D; Pypers P; Six J; Merckx R; Vanlauwe B
    PLoS One; 2020; 15(9):e0239552. PubMed ID: 32970779
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.