BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 38215602)

  • 21. Expression of OsMYB55 in maize activates stress-responsive genes and enhances heat and drought tolerance.
    Casaretto JA; El-Kereamy A; Zeng B; Stiegelmeyer SM; Chen X; Bi YM; Rothstein SJ
    BMC Genomics; 2016 Apr; 17():312. PubMed ID: 27129581
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Key Maize Drought-Responsive Genes and Pathways Revealed by Comparative Transcriptome and Physiological Analyses of Contrasting Inbred Lines.
    Zenda T; Liu S; Wang X; Liu G; Jin H; Dong A; Yang Y; Duan H
    Int J Mol Sci; 2019 Mar; 20(6):. PubMed ID: 30871211
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Maize ZmLAZ1-3 gene negatively regulates drought tolerance in transgenic Arabidopsis.
    Yu H; Liu B; Yang Q; Yang Q; Li W; Fu F
    BMC Plant Biol; 2024 Apr; 24(1):246. PubMed ID: 38575869
    [TBL] [Abstract][Full Text] [Related]  

  • 24. iTRAQ-Based Proteomic Analysis Reveals Several Strategies to Cope with Drought Stress in Maize Seedlings.
    Jiang Z; Jin F; Shan X; Li Y
    Int J Mol Sci; 2019 Nov; 20(23):. PubMed ID: 31779286
    [TBL] [Abstract][Full Text] [Related]  

  • 25. ZmLBD5, a class-II LBD gene, negatively regulates drought tolerance by impairing abscisic acid synthesis.
    Feng X; Xiong J; Zhang W; Guan H; Zheng D; Xiong H; Jia L; Hu Y; Zhou H; Wen Y; Zhang X; Wu F; Wang Q; Xu J; Lu Y
    Plant J; 2022 Dec; 112(6):1364-1376. PubMed ID: 36305873
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Maize WRKY Transcription Factor
    Gulzar F; Fu J; Zhu C; Yan J; Li X; Meraj TA; Shen Q; Hassan B; Wang Q
    Int J Mol Sci; 2021 Sep; 22(18):. PubMed ID: 34576244
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Identification of Maize CC-Type Glutaredoxins That Are Associated with Response to Drought Stress.
    Ding S; He F; Tang W; Du H; Wang H
    Genes (Basel); 2019 Aug; 10(8):. PubMed ID: 31409044
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Autophagy receptor ZmNBR1 promotes the autophagic degradation of ZmBRI1a and enhances drought tolerance in maize.
    Xiang Y; Li G; Li Q; Niu Y; Pan Y; Cheng Y; Bian X; Zhao C; Wang Y; Zhang A
    J Integr Plant Biol; 2024 Jun; 66(6):1068-1086. PubMed ID: 38607264
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Maize ZmBES1/BZR1-1 transcription factor negatively regulates drought tolerance.
    Feng W; Zhang H; Cao Y; Liu Y; Zhao Y; Sun F; Yang Q; Zhang X; Zhang Y; Wang Y; Li W; Lu Y; Fu F; Yu H
    Plant Physiol Biochem; 2023 Dec; 205():108188. PubMed ID: 37979574
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Physiological and transcriptomic analyses of the effects of exogenous melatonin on drought tolerance in maize (Zea mays L.).
    Zhao C; Yang M; Wu X; Wang Y; Zhang R
    Plant Physiol Biochem; 2021 Nov; 168():128-142. PubMed ID: 34628174
    [TBL] [Abstract][Full Text] [Related]  

  • 31. CRISPR/Cas9 Gene Editing of
    Li G; Ma Y; Wang X; Cheng N; Meng D; Chen S; Wang W; Wang X; Hu X; Yan L; Wang S
    Int J Mol Sci; 2022 Dec; 23(23):. PubMed ID: 36499605
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Genome-Wide Analysis of TCP Family Genes in
    Ding S; Cai Z; Du H; Wang H
    Int J Mol Sci; 2019 Jun; 20(11):. PubMed ID: 31195663
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Functional analysis of a late embryogenesis abundant protein ZmNHL1 in maize under drought stress.
    Wang G; Su H; Abou-Elwafa SF; Zhang P; Cao L; Fu J; Xie X; Ku L; Wen P; Wang T; Wei L
    J Plant Physiol; 2023 Jan; 280():153883. PubMed ID: 36470036
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Introducing sorghum DREB2 gene in maize (Zea mays L.) to improve drought and salinity tolerance.
    Izadi-Darbandi A; Alameldin H; Namjoo N; Ahmad K
    Biotechnol Appl Biochem; 2023 Aug; 70(4):1480-1488. PubMed ID: 36916234
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Natural variations in the non-coding region of ZmNAC080308 contributes maintaining grain yield under drought stress in maize.
    Wang N; Cheng M; Chen Y; Liu B; Wang X; Li G; Zhou Y; Luo P; Xi Z; Yong H; Zhang D; Li M; Zhang X; Vicente FS; Hao Z; Li X
    BMC Plant Biol; 2021 Jun; 21(1):305. PubMed ID: 34193036
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Physiological and proteomic analyses revealed the response mechanisms of two different drought-resistant maize varieties.
    Li H; Yang M; Zhao C; Wang Y; Zhang R
    BMC Plant Biol; 2021 Nov; 21(1):513. PubMed ID: 34736392
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The Transcription Factor
    Hu Y; Li C; Zhou R; Song Y; Lv Z; Wang Q; Dong X; Liu S; Feng C; Zhou Y; Zeng X; Zhang L; Wang Z; Di H
    Int J Mol Sci; 2023 Oct; 24(20):. PubMed ID: 37894780
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Molecular priming with H
    Gelaw TA; Sanan-Mishra N
    Biochim Biophys Acta Gen Subj; 2024 Jul; 1868(7):130633. PubMed ID: 38762030
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Genome-wide analysis of ZmDREB genes and their association with natural variation in drought tolerance at seedling stage of Zea mays L.
    Liu S; Wang X; Wang H; Xin H; Yang X; Yan J; Li J; Tran LS; Shinozaki K; Yamaguchi-Shinozaki K; Qin F
    PLoS Genet; 2013; 9(9):e1003790. PubMed ID: 24086146
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Transcriptome analysis of maize inbred lines differing in drought tolerance provides novel insights into the molecular mechanisms of drought responses in roots.
    Zheng H; Yang Z; Wang W; Guo S; Li Z; Liu K; Sui N
    Plant Physiol Biochem; 2020 Apr; 149():11-26. PubMed ID: 32035249
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.